Physics Problem Set 7 - due Mon. May 23 by 6pm (9043592)

G	Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
1.	Question Details Since astronauts in orbit are apparently weightless, a clever meth mass gains or losses to adjust diets. One way to do this is to exer acceleration produced. Suppose a net external force of 58.0 N is e 0.912 m/s ² . Calculate her mass. Supporting Materials Physical Constants	t a known force on an astronaut and measure the
2.	Question Details An object of mass 11.0 kg subjected to a non-zero net force move (a) Determine the net force acting on it. (Enter the magni) 31.9 N (b) What acceleration would a 22.0-kg object have if the s 1.45 m/s ² Supporting Materials	tude only.)

Two horizontal forces, P and G, are acting on a block that is placed on a table. We know that P is directed the direction of G is unknown; it could either be directed to the right or to the left. The object moves along it Assume there is no friction between the object and the table. Here $P = -2.0$ N and the mass of the block is 4 Image: the direction of G is unknown; it could either be directed to the right or to the left. The object moves along it Assume there is no friction between the object and the table. Here $P = -2.0$ N and the mass of the block is 4 Image: the direction of G is unknown; it could either be directed to the right or to the left. The object moves along it Assume there is no friction between the object and the table. Here $P = -2.0$ N and the mass of the block is 4 Image: the direction of G is unknown; it could either be object and the table. Here $P = -2.0$ N and the mass of the block is 4 Image: the direction of G is unknown; it could either be object and the table. Here $P = -2.0$ N and the mass of the block is 4 Image: the direction of G is unknown; it could either be object and the table. Here $P = -2.0$ N and the mass of the block is $+7.2$ m/s². (Indicate with the sign of your answer.) Image: the direction of G is when the acceleration of the block is -7.2 m/s². (Indicate with the sign of your answer.) Image: 26.8 N Question Details OSColPhys14.8.027.1.0.0.1 A 78-kg man stands on a bathroom scale inside an elevator. Draw free body diagrams!! (a) The elevator accelerates upward from rest at a rate of 1.20 m/s² for 1.50 s. What does the scale of 1.50 s interval?	16.WA. [2707405			
with the sign of your answer.) (b) What is the magnitude and direction of $\overline{\mathbf{Q}}$ when the acceleration of the block is +7.2 m/s ² . (Indicate direction with the sign of your answer.) (c) Find the magnitude and direction of $\overline{\mathbf{Q}}$ when the acceleration of the block is -7.2 m/s ² . (Indicate with the sign of your answer.) (c) Find the magnitude and direction of $\overline{\mathbf{Q}}$ when the acceleration of the block is -7.2 m/s ² . (Indicate with the sign of your answer.) (c) Find the magnitude and direction of $\overline{\mathbf{Q}}$ when the acceleration of the block is -7.2 m/s ² . (Indicate with the sign of your answer.) (c) Find the magnitude and direction of $\overline{\mathbf{Q}}$ when the acceleration of the block is -7.2 m/s ² . (Indicate with the sign of your answer.) (c) Find the magnitude and direction of $\overline{\mathbf{Q}}$ when the acceleration of the block is -7.2 m/s ² . (Indicate with the sign of your answer.) (c) Find the magnitude and direction of $\overline{\mathbf{Q}}$ when the acceleration of the block is -7.2 m/s ² . (Indicate with the sign of your answer.) (c) Find the magnitude and direction of $\overline{\mathbf{Q}}$ when the acceleration of the block is -7.2 m/s ² . (Indicate with the sign of your answer.) (c) While still moving upward, the elevator is speed decreases at a rate of 0.450 m/s ² for 3.00 s. What does the scale read now?	the <i>x</i> -axis.			
direction with the sign of your answer.) 30.8 N (c) Find the magnitude and direction of Q when the acceleration of the block is -7.2 m/s ² . (Indicate with the sign of your answer.)	te the directio			
with the sign of your answer.) Image: Supporting Materials Physical Constants Question Details Question Details OSColPhys1 4.P.027. Tutoria (a) The elevator accelerates upward from rest at a rate of 1.20 m/s ² for 1.50 s. What does the scale in 1.50 s interval? (b) The elevator continues upward at constant velocity for 8.50 s. What does the scale read now? Image: Televator in the elevator of 0.450 m/s ² for 3.00 s. What does the scale read now?	icate the			
Physical Constants Question Details OSColPhys1 4.P.027.Tutoria A 78-kg man stands on a bathroom scale inside an elevator. Draw free body diagrams!! (a) The elevator accelerates upward from rest at a rate of 1.20 m/s² for 1.50 s. What does the scale 1.50 s interval? (b) The elevator continues upward at constant velocity for 8.50 s. What does the scale read now? (c) While still moving upward, the elevator's speed decreases at a rate of 0.450 m/s² for 3.00 s. What	e the directior			
A 78-kg man stands on a bathroom scale inside an elevator. Draw free body diagrams!! (a) The elevator accelerates upward from rest at a rate of 1.20 m/s ² for 1.50 s. What does the scale of 1.50 s interval? (b) The elevator continues upward at constant velocity for 8.50 s. What does the scale read now? (c) While still moving upward, the elevator's speed decreases at a rate of 0.450 m/s ² for 3.00 s. What				
 (a) The elevator accelerates upward from rest at a rate of 1.20 m/s² for 1.50 s. What does the scale 1.50 s interval? (b) The elevator continues upward at constant velocity for 8.50 s. What does the scale read now? 764 N (c) While still moving upward, the elevator's speed decreases at a rate of 0.450 m/s² for 3.00 s. What does the scale read now? 	ial.WA. [2707379			
 (c) While still moving upward, the elevator's speed decreases at a rate of 0.450 m/s² for 3.00 s. What was a state of 0.450 m/s² for 3.00 s. What was a state of 0.450 m/s² for 3.00 s. What was a state of 0.450 m/s² for 3.00 s. What was a state of 0.450 m/s² for 3.00 s. What was a state of 0.450 m/s² for 3.00 s. What was a state of 0.450 m/s² for 3.00 s. What was a state of 0.450 m/s² for 3.00 s. What was a state of 0.450 m/s² for 3.00 s. What was a state of 0.450 m/s² for 3.00 s. 	read during t			
	🥖 764 N			
📝 729 N	at is the scale			
Supporting Materials				
Physical Constants				

5.	Question Details	OSColPhys1 4.P.008.WA. [2707404]
	You work at a garden store for the summer. You lift acceleration of 0.775 m/s ² . (a) What is the mass of the fertilizer bag? (b) How much does the fertilizer bag weight (b) How much does the fertilizer bag weight 102 N Supporting Materials Physical Constants	a bag of fertilizer with a force of 110 N, and it moves upward with an Draw a free body diagram! ?
6.	Question Details	OSColPhys1 6.P.023.WA. [2611719]
	crudely similar to gravity. The outer wall of the rota centripetal acceleration supplied by the floor would	pravity"—a loosely-defined term used for an acceleration that would be ting space station would become a floor for the astronauts, and allow astronauts to exercise and maintain muscle and bone strength nents. If the space station is 180 m in diameter, what angular velocity the rim?
7.	Question Details	OSColPhys1 6.P.010.WA. [2611539] _
		ingential speed v _M ?

Question Details OSColPhys1 6.P.018.WA. [2611772]			
Helicopter blades withstand tremendous stresses. In addition to supporting the weight of the helicopter, they are spun at rapid rates and experience large centripetal accelerations, especially at the tip.			
(a) Calculate the centripetal acceleration at the tip of a 3.80-m-long helicopter blade that rotates at 340 rev/min. 4820 m/s ²			
(b) Compare the tangential speed of the tip with the speed of sound (taken to be 340 m/s on this day). $\frac{V}{V_{\text{round}}} = $ 0.398			
Supporting Materials			
Physical Constants			
 Question Details OSColPhys1 6.P.027.WA. [2611761]			
(a) A 23.0-kg child is riding a playground merry-go-round that is rotating at 30.0 rpm. What centripetal force must she exert to stay on if she is 1.50 m from its center?			
6.40 m from its center?			
(c) Compare each force with her weight. $\frac{\text{force from part (a)}}{\text{weight}} = \boxed{1.51}$ $\frac{\text{force from part (b)}}{\text{force from part (b)}} = \boxed{0.0645}$			
(c) Compare each force with her weight. $\frac{\text{force from part (a)}}{\text{weight}} = \boxed{2} 1.51$ force from part (b)			
(c) Compare each force with her weight. $\frac{\text{force from part (a)}}{\text{weight}} = 2.51$ $\frac{\text{force from part (b)}}{\text{weight}} = 2.00645$			
 (c) Compare each force with her weight. <u>force from part (a)</u> = 1.51 <u>force from part (b)</u> = 0.0645 <u>weight</u> <u>supporting Materials</u> Physical Constants			
(c) Compare each force with her weight. <u>force from part (a)</u> =			
 (c) Compare each force with her weight. $ \frac{force from part (a)}{weight} = 1.51 $ $ \frac{force from part (b)}{weight} = 0.0645 $ Supporting Materials Physical Constants Question Details OSColPhys1 6.P.040.WA. [2611472] (a) What is the acceleration of gravity on the surface of the Moon? The mass of the moon is 7.35 × 10 ²² kg and its radius i 1.74 × 10 ⁶ m. $ \frac{[]}{[]} 1.62 \text{ m/s}^2 $			
<pre>(c) Compare each force with her weight. force from part (a) =</pre>			

11.	Question Details	OSColPhys1 6.P.047.WA. [2611781]
	Two spheres A and B are placed in the arrangement shown below.	
	(a) If $m_A = 2m$ and $m_B = 6m$, where on the dashed line should a thir net force on it is zero?	d sphere C of mass $6m$ be placed so that the
	 between A and B, closer to B 	
	 at the midpoint between A and B 	
	Detween A and B, closer to A	
	O to the left of B	
	 to the right of A 	
	(b) If the distance between the two spheres A and B is 500 cm, find the net force on it is zero. $\qquad \qquad $	e location for the third sphere C so that the
	Supporting Materials	
	Physical Constants	
12.	Question Details	OSColPhys1 6.P.046.WA. [2611562]
	A heavier mass m_1 and a lighter mass m_2 are 18.5 cm apart and experience a 9.60 × 10 ⁻⁹ N in magnitude. The two masses have a combined value of 5.45 k	

Supporting Materials		
Physical Constants		

Question Details	OSColPhys1 6.P.053.WA. [2611755]		
NASA launches a satellite into orbit at a height above the surface of the Earth equal to the Earth's mean radius. The mass of the satellite is 660 kg. (Assume the Earth's mass is 5.97×10^{24} kg and its radius is 6.38×10^{6} m.)			
 (a) How long does it take the satellite to go around the Earth once? 3.99 h (b) What is the orbital speed of the satellite? 5590 m/s (c) How much gravitational force does the satellite experience? 	answer this in reverse order: (c) first, (b) next, (a) last		
Supporting Materials			
Physical Constants			
 Question Details	OSColPhys1 6.P.052.WA. [2611569]		
Determine the orbital speed of a satellite that circles the Earth with a period of 5.97 × 10 ²⁴ kg.	2.00 \times 10 ⁴ s. The mass of the Earth is		
Physical Constants			
 Question Details	OSColPhys1 6.P.056.WA. [2611585]		
Astronomical observations of our Milky Way galaxy indicate that it has a mass of orbiting near the galaxy's periphery is 5.7 × 10 ⁴ light years from its center. (For mass is concentrated near its center.) (a) What should the orbital period of that star be? 2.42e+08 yr			
 (b) If its period is 6.5 × 10⁷ years instead, what is the mass of the galaxy the existence of "dark matter" in the universe and have indicated, for exa black holes at the centers of some galaxies. 1.11e+13 solar masses 	mple, the existence of very massive		
(b) If its period is 6.5×10^7 years instead, what is the mass of the galaxy the existence of "dark matter" in the universe and have indicated, for example black holes at the centers of some galaxies.	mple, the existence of very massive		
(b) If its period is 6.5×10^7 years instead, what is the mass of the galaxy the existence of "dark matter" in the universe and have indicated, for exa black holes at the centers of some galaxies.			
 (b) If its period is 6.5 × 10⁷ years instead, what is the mass of the galaxy the existence of "dark matter" in the universe and have indicated, for exa black holes at the centers of some galaxies. 1.11e+13 solar masses 	mple, the existence of very massive		