Physics Problem Set 6 - due Mon. May 9 by 6pm (8983576)

ົງເ	Jestion 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		
	Question Details OSColPhys1 5.P.047.WA. [261340 Cable A has a radius of 3.48×10^{-3} m while cable B has a radius of 4.90×10^{-3} m. A stretching force of 285 N is applied cable A. Determine the force that will produce the same stress on cable B as on cable A.		
	Supporting Materials Physical Constants		
-	Question Details OSColPhys1 5.P.034.WA. [2613389] Calculate the force a piano tuner applies to stretch a steel piano wire 8.60 mm, if the wire is originally 0.800 mm in diameter and 1.30 m long. Young's modulus for steel is 210 × 10 ⁹ N/m ² . Image: Ward of the steel piano wire 8.60 mm in the steel		
	Supporting Materials Physical Constants		
	Question Details OSColPhys1 5.P.036.WA. [308130		
	Steel beams are used for load bearing supports in a building. Each beam is 4.0 m long with a cross-sectional area of 7.3 × 10 ⁻³ m ² and supports a load of 5.9 × 10 ⁴ N. Young's modulus for steel is 210 × 10 ⁹ N/m ² . (a) How much compression does each beam undergo along its length?		
	 (b) Determine the maximum load one of these beams can support without any structural failure if the compressing strength of steel is 1.50 × 10⁸ N/m². Image: Supporting Materials 		

-	Question Details OSColPhys1 5.P.037.WA. [2613406]
	During a circus act, one performer swings upside down hanging from a trapeze holding another, also upside down, performer by the legs. If the upward force on the lower performer is three times her weight, how much does each of the bones (the femurs) in her upper legs stretch? You may assume each is equivalent to a uniform rod 35.0 cm long and 1.80 cm in radius. Her mass is 59.0 kg. Assume Young's modulus for bone under tension is 16×10^9 N/m ² .
	Supporting Materials
	Physical Constants
5.	Question Details OSColPhys1 5.P.039.WA. [2613432]
	A tungsten rod and a brass rod have the same length and diameter and are subjected to the same force. If the tungsten rod stretches by 2.80×10^{-6} m, by what amount will the brass rod stretch? Young's modulus for tungsten = 3.60×10^{11} N/m ² ; for brass = 9.00×10^{10} N/m ² .
	Supporting Materials
	Physical Constants
	Question Details OSColPhys1 5.P.042.WA. [2613392] A 92-kg climber mountain climber stretches her 0.9-cm diameter nylon rope by 1.6 m when she hangs below a rock
	outcropping. If the original length of the rope is 55 m, what is its Young's modulus?
	Supporting Materials
	Physical Constants
	Question Details OSColPhys1 5.P.043.Tutorial.WA. [2632679]
	A rod has a 1.3-m-long section that is cast iron and a 2.6-m-long section that is aluminum as shown in the diagram below. The diameter of the cylindrical rod is 0.40 cm. $Y_{\text{cast iron}} = 100 \times 10^{10} \text{ N/m}^2$ and $Y_{\text{aluminum}} = 7 \times 10^{10} \text{ N/m}^2$. How much elongation is produced in the rod when it is subjected to a force of 8.1 $\times 10^3$ N?
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	0.20 cm Rod 1 Rod 2

8.	Question Details	OSColPhys1 5.P.044.WA. [2613412]	
	-	ngth and diameter. They are joined end to end to produce one long ulus of this compound rod. The Young's modulus value for aluminum ² .	
	Supporting Materials		
	Physical Constants		
9.	Question Details	OSColPhys1 5.P.048.WA. [2613434]	
	A disk between vertebrae in the spine is subjected to a shearing force of 650 N. Find its shear deformation taking it to have the shear modulus of 1. \times 10 ⁹ N/m ² . The disk is equivalent to a solid cylinder 0.700 cm high and 3.60 cm in diameter.		
	Supporting Materials Physical Constants		
10.	Ouestion Details OSColPhys1 5.P.050.WA. [2613398] A 19.0-m tall hollow aluminum flagpole is equivalent in strength to a solid cylinder of aluminum 6.00 cm in diameter. A strong wind bends the pole much as a horizontal force of 900 N exerted at the top would. How far to the side does the top of the pole flex? The shear modulus for aluminum is 25 × 10 ⁹ N/m ² .		
	Supporting Materials Physical Constants		
11.		OSCoIPhys1 5.P.051.WA. [2613413] nd 2.00 cm thick to create a makeshift diving board. They fasten one	
		plank jutting horizontally over the lake below the cliff. When a 77.8-kg that end to drop 4.91 cm. What is the shear modulus of the wooden	

12.	Question Details	OSColPhys1 5.P.054.WA. [2613426]	
	The top and bottom surfaces of a metal block each have an area of <i>A</i> At the top surface of the block, a force F_1 is applied to the right, while applied to the left, causing a shear in the metal block. If $F_1 = F_2 = 32$ due to the shear is 1.30×10^{-3} m, what is the shear modulus of the metal block is $1.32e+11$ N/m ²	e at the bottom surface of the block, a force F_2 is x 10 ⁶ N and the displacement between the two edges	
	Supporting Materials		
	Physical Constants		
13.	Question Details	OSColPhys1 5.P.055.WA. [2613430]	
	The pressure on a volume of liquid $V = 1.1 \text{ m}^3$ at the surface is approximately equal to the atmospheric pressure $P_{\text{atm}} = 1.00 \times 10^5 \text{ N/m}^2$. If this volume of liquid is now placed at a depth where the pressure is $P = 2.05 \times 10^7 \text{ N/m}^2$, what will be the change in volume of the liquid? The bulk modulus of the liquid is 7.0 × 10 ¹⁰ N/m ² . (Include the appropriate sign with your answer.) $\boxed{\qquad}$ $\boxed{\qquad}$ $\boxed{\qquad}$ 0.000321 m^3		
	Supporting Materials		
	Physical Constants		

14.	Question Details OSColPhys1 5.P.056.WA. [2613437]
	A moonshiner makes the error of filling a glass jar to the brim and capping it tightly. The moonshine expands more than the glass when it warms up, in such a way that the volume increases by 0.3% (that is, $\Delta V/V_0 = 3$. × 10 ⁻³) relative to the space available.
	(a) Calculate the force exerted by the moonshine per square centimeter if the bulk modulus is 1.6×10^9 N/m ² , assuming the jar does not break.
	(b) How many atmospheres is this?
	(c) In view of your answer, do you think the jar survives?
	O Yes
	🔿 🦻 No
	Supporting Materials
	Physical Constants

15.	Question Details	OSColPhys1 5.P.057.WA. [2613393]
	When water freezes, its volume increases by 9.05% (that is, $\Delta V/V_0 = 9.05 \times 10^{-10}$ capable of exerting on a container when it freezes? (The bulk modulus of water is only.)	$2.2 \times 10^9 \text{ N/m}^2$. Enter the magnitude
	Is it surprising that such forces can fracture engine blocks, boulders, and the like Supporting Materials	
	Physical Constants	