1) The figure shows two processes, A and B, carried out on an ideal gas, starting from the initial state \(i \) and ending at the final state \(f \).

a) In which process was the (magnitude of the) change in energy of the gas greater?

\[\begin{array}{ccc}
A & B & \text{same} \\
\text{not enough info} & &
\end{array} \]

b) In which process was the (magnitude of the) change in entropy of the gas greater?

\[\begin{array}{ccc}
A & B & \text{same} \\
\text{not enough info} & &
\end{array} \]

c) In which process was the (magnitude of the) work done by the gas greater?

\[\begin{array}{ccc}
A & B & \text{same} \\
\text{not enough info} & &
\end{array} \]

d) In which process was the (magnitude of the) energy transferred thermally to the gas greater?

\[\begin{array}{ccc}
A & B & \text{same} \\
\text{not enough info} & &
\end{array} \]

2) An ideal gas undergoes the 3 step process shown in the \(PV \) diagram. Calculate the work done by the gas in terms of \(P_i \) and \(V_i \).
3) A diatomic ideal gas ($d = 5, \gamma = 7/5 = 1.4$) initially has a volume of 1.5 m^3 and a pressure of $1.5 \times 10^7 \text{ Pa}$. The gas is then slowly compressed isentropically and adiabatically to a final volume of 0.5 m^3.

a) Determine the final pressure of the gas after the compression.

b) Determine the work done on the gas during the compression. If you couldn’t answer part a), use $6.0 \times 10^7 \text{ Pa}$.

c) Imagine the compression from initial volume 1.5 m^3 to final volume 0.5 m^3 had been isothermal instead of isentropic and adiabatic. For which compression process (the isotherm or the isentrope/adiabat) would the work done on the gas be greater? Explain your reasoning; you might not have to do any new calculations (Hint: draw the processes on a PV diagram).