Calculus week 11 - Solns to odd problems
$5.1: 11,23$
$5,2: 3,7,25,27$
$5.3: 1,5,7,13,29,35$
11)

This estimate of total inco me is lower than that in Fig 5.1 by $\sqrt{4}$
5.2) 1) Antidentatue of $5 x^{4}+4 x^{3}$ is $x^{5}+x^{4}$ so inteyal $\int_{0}^{1} 5 x^{4}+4 \cdot x^{3} d x$ is $\left.x^{5}+x^{4}\right]_{0}^{1}=2$ 3) An andiderivative of $\frac{1}{\sqrt{x}}$ is $2 x^{-1 / 2}$, so $\int_{0}^{1} \frac{1}{\sqrt{x}} d x=2 \cdot 1^{1 / 2}-2 \cdot 0^{\frac{1}{2}}=2$
7) An antideriatue of $2 \sin x+\sin 2 x=-2 \cos x-\frac{\cos 2 x}{2}$

$$
\text { so } \begin{aligned}
\left.\int_{0}^{1} 2 \sin x+\sin 2 x d x=-2 \cos x-\frac{\cos 2 x}{2}\right]_{0}^{1} & =-2 \cos 1-\frac{\cos 2}{2}+2 \cos 0+\frac{\cos 0}{2} \\
& =-2 \cos 1-\frac{\cos ^{2}}{2}+\frac{5}{2}
\end{aligned}
$$

25) In the first graph we see about area I above the axis one $2 \frac{1}{4}$ below.

So $f(2) \approx 1-\frac{1}{2}=\frac{1}{2}$. For $f(4)$ note area below $\simeq 2$ so $f(4) \approx 1-4=-3$
In th second figure, area above is $\frac{1}{2}$ and area below is $\frac{1}{4}$ from 102 . Ha $f(2)=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$ Going on to 4 we add positive area of 1 , so $f(4) \approx\left[\frac{1}{4}=\frac{5}{4}\right.$
27) Fur v_{1} the area increases the decreases after 1 For v_{2} the area increases then decreases from 1 to 2 then increases from 22%.
1)

$$
\begin{aligned}
\sum_{n=1}^{4} \frac{1}{n} & =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4} \quad \sum_{i=2}^{3}(2 i-3)=1+3+5+7=16 \\
& =\frac{25}{12}
\end{aligned}
$$

5)

$$
\begin{aligned}
& 2+1+6++100=\sum_{j=1}^{50} 2_{j}=2 \sum_{j=1}^{50} j=2 \cdot \frac{50(50+1)}{2}=2550 \\
& 1+3+5++199=\sum_{j=1}^{100} 2 j-1=2 \sum_{j=1}^{100} j-\sum_{j=1}^{100} 1=10100-100010,000 \\
& 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}=\sum_{j=1}^{4}(-1)^{j+1} \cdot \frac{1}{j}=\frac{7}{12}
\end{aligned}
$$

7)

$$
\begin{aligned}
& a_{0}+\cdots+a_{n} x^{n}=\sum_{j=0}^{n} a_{n} x^{n} \\
& \sin \frac{2 \pi}{n}+\sin \frac{4 \pi}{n}+\ldots+\sin 2 \pi=\sum_{j=1}^{n} \frac{2+j}{n}
\end{aligned}
$$

13)

$$
\begin{aligned}
& \sum_{k=1}^{n} 2^{k}-2^{k-1}=2^{1}-2^{0}+2^{x}-2^{n}+2^{3}-2^{3}+\cdots+2^{n}-2^{n k}=2^{n}-1 \\
& \sum_{j=1}^{n=1} \frac{1}{j+1}-\frac{1}{j}=\frac{1}{y}-1+\frac{1}{3}-\frac{1}{2}+\frac{1}{x}-\frac{1}{3}+\cdots+\frac{1}{1-\frac{1}{10}}=\frac{1}{11}-1=\frac{-10}{11}
\end{aligned}
$$

29) $\sum_{j=1}^{2}\left[\sum_{j=1}^{3}(i+j)\right]=\sum_{j=1}^{3} 1+j+\sum_{j=1}^{3} 2+j=\underbrace{2+3+4}_{v_{i}}+\underbrace{3+4+5}_{v_{e}}=9+12=21$
30)

$$
\begin{aligned}
\text { Area } & =\Delta x v(\Delta x)+\Delta x v(2 \Delta x)+\Delta x v(3 \Delta x) \times \cdot \Delta x \sum \ln d x \\
& =\sum_{j=1}^{n} v(j \Delta x) \cdot \Delta x
\end{aligned}
$$

