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Relativity 1:  Basic Postulates 
 
Learning Goals 
 

1. State the basic, fundamental principles of relativity, and explain how 
the various aspects of relativity all follow logically from these basic 
principles. 

2. Develop your sense for distances and speeds, connecting numerical 
values to real-world quantities. Convert between standard and 
relativistic units for distance and for speed. 

3. Relate time intervals in two different reference frames using the 
proper time relation if one of the observers is at both events. 

4. Relate length and distance measurements in two different reference 
frames using the length contraction relation if one of the observers is 
at rest with respect to the distance/length being measured. 

5. Use the velocity transformations to relate the velocities of objects or 
of reference frames.  

 
In 2015, we celebrated the 110th anniversary of Albert Einstein’s so called Annus 

mirabilis, or “Miracle Year.”  In 1905, Einstein published four papers that revolutionized 
science and fundamentally changed the way in which we view the universe. Interestingly, 
three of these seminal papers were published in the very same issue of the journal Annalen 
der Physik, volume 17. The first paper (beginning on p. 132 of that issue) explained a 
phenomenon known as the photoelectric effect by introducing the idea of photons 
(particles of light), an idea which formed one of the cornerstones of quantum mechanics. 
Though any one of these papers would have been a monumental lifetime achievement for 
any physicist, Einstein won the 1921 Nobel Prize in physics “for his services to Theoretical 
Physics, and especially for his discovery of the law of the photoelectric effect.”  The second 
paper (p. 549) was the first to connect molecular diffusion (spreading of an impurity in a 
motionless fluid) with random Brownian motion of the individual impurity molecules. 
The third paper (p. 891) had an innocuous title: “Zur Elektrodynamik bewegter Korpër” 
(“On the electrodynamics of moving bodies”). 

 
But there is nothing even remotely innocuous about the implications of the theory – 

now known as Einstein’s Special Theory of Relativity (“special relativity” for short) – 
presented in that paper. Einstein’s theory completely changed common conceptions of 
space and time, establishing that they are closely interrelated, as we will see. This theory 
also changed our conceptions of mass and energy, establishing their intimate relationship; 
this equivalence was elaborated in Einstein’s fourth paper of the Miracle Year, in Annalen 
der Physik, 18, 639. The theory led to an explanation of how stars generate light – the 
fundamental source of energy in the universe without which life on this planet would not 
be possible – and (indirectly) led to the development of nuclear energy and weapons. The 
theory also holds the key to the future development of certain non-fossil fuel energy 
sources. Studying Einstein’s theory of relativity allows you to change your understanding 
of nature in a fundamental way.  
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This chapter discusses some of the main ideas and implications of the Special Theory 
of Relativity, which applies to the motion of objects in inertial (constant velocity) reference 
frames. Einstein’s General Theory of Relativity (“general relativity” for short) expands the 
theory to account for the effects of acceleration and gravitational fields.  

 
A. Preliminaries 

 
A few definitions will be useful. 
 
An event is something that happens at a particular location at a particular time. It is 

important to be clear about this, because relativity deals with how different observers 
measure distances and times between events. For instance, let’s say that the penguin on 
top of Arlo’s television set explodes at 7:12 a.m. on a Saturday morning. Rebecca then runs 
5 km to a large tower where Rachel receives (at 7:46 a.m.) a free “Math. Math! MATH!” T-
shirt from a mutated lab mouse. You could identify two events – the explosion of the 
penguin and the receipt of the T-shirt – and say that these events are separated by 5 km 
in space and 44 min in time. Relativity addresses the question of how a different observer 
measures the distance and time between the same two events. (Spoiler!  not everyone will 
agree about the distance and time between events.) 

 
 A reference frame can be thought of as a set of common observers subject to the same 

conditions. Specifically, we will say that several observers are in the same reference frame 
if they agree about the distance and time between any two events. 

 
A particularly important kind of reference frame is an inertial reference frame. 

Observers in an inertial reference frame experience no significant acceleration, nor can 
they discern any gravitational effects. In an ideal inertial reference frame, the observer 
would be floating free (hence the name “free float” that is sometimes used to discuss an 
inertial reference frame), because any non-floating motion would necessarily imply either 
acceleration or gravitational effects. To analyze behavior in the vicinity of very strong 
gravitational fields, it is necessary to use general relativity. 

 
Technically, an observer is not in a true inertial reference frame if she is standing on 

the surface of a planet since there is gravitation. However, there are plenty of situations 
where non-inertial effects are small enough as to be negligible. In fact, the gravitation from 
a typical planet is small enough so that the non-inertial effects are negligible, and Special 
Relativity works perfectly well. So, for example, we will often treat observers moving on 
a constant velocity train as though they are in an inertial reference frame, even though 
there is a small gravitational effect. 

 
When dealing with velocities, we have to be careful. A velocity technically has 

meaning only if there is a reference. So, for example, if Mina is in a car and she is traveling 
65 mph toward the west, she is really traveling 65 mph relative to the surface of the Earth. 
In fact, almost any velocity that people quote in everyday usage is defined relative to the 
Earth. 
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Think About This #1.1:   
How fast is Mina really going if she is in the car in the previous paragraph? 
 
Certainly, anyone who is willing to accept a non-geocentric view of the universe 

realizes that there is nothing inherently special about the Earth as a reference frame. But 
scientists have long wondered if there is some preferred universal reference frame from 
which all velocities should be defined, some standard by which we could define absolute 
velocities for every object in the universe. 

 
In relativity, we will use relative velocities, i.e., velocities will always be defined 

relative to some reference frame. In fact, one result of relativity is the realization that this 
is the best way to define velocity. There is no need to choose any special reference frame 
for the universe; all the results of relative work perfectly well with velocities measured 
relative to any reference frame that you might choose. 

 
The following statement applies to relative velocities: if observer A measures observer 

B to be moving at a (relative) speed v in a particular direction, then B measures A to be 
moving at a (relative) velocity of the same speed v but in the opposite direction.  

 
B. Fundamental Principles of Relativity  

 
Einstein’s Special Theory of Relativity is based on a very simple premise, namely  

 
The Principle of Relativity:  the laws of physics are the 
same for observers in different inertial reference frames. 
 

Let’s say, for example, that Sina sets up a lab in the first floor of Lab II while Paul sets up 
an identical lab inside a truck that is driving on Evergreen Parkway with a constant 
velocity. Whatever physics equations (including fundamental constants) Sina uses to 
predict and describe the behavior in Sina’s lab should work equally well for Paul in 
Paul’s lab. 
 

Not only is this an intuitively reasonable statement, but the argument can be made 
that the whole field of physics would be useless if this statement weren’t true (along with 
chemistry, biology and engineering as well). After all, what is the point of formulating a 
set of laws to describe the universe if they only apply to certain observers moving in a 
certain way?  

 
The question then boils down to this:  what are the fundamental “laws of physics” that 

are the same for all observers? At the beginning of the 20th Century, two of the main 
cornerstones of physics were Newton’s Laws of Classical Mechanics and Maxwell’s 
Equations describing electrical and magnetic fields. You were introduced to Newton’s 
Laws and Maxwell’s equations earlier this year. 

 
During the 19th Century, there was a tremendous surge of research to describe electric 

and magnetic phenomena, culminating in the integration of electromagnetic theory into a 
set of four fundamental laws by James Clerk Maxwell in the late 1800s. Maxwell’s results 
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not only unified electricity and magnetism into a single, consistent theory, but also 
showed for the first time that light is an electromagnetic wave. The theory also showed 
how to produce a wide variety of different types of electromagnetic waves (light, radio, 
microwaves, gamma rays, etc.), a prescription that had been successfully tested during 
the period between Maxwell’s theory and Einstein’s work on relativity. Maxwell’s 
equations were considered (and still are) by the scientific community to be one of the 
cornerstones of physical law.  

 
But there was a problem:  by the end of the 19th Century, some theorists – most notably 

Hendrik Lorentz and George Fitzgerald – attempted to generalize Maxwell’s equations to 
apply to observers in any reference frame and found that this could not be done within 
the framework of Newtonian Classical Mechanics. There arose, effectively, a conflict 
between the two most widely-accepted cornerstones of physics. 

 
Here is where Einstein came into the picture. Whereas few people had previously had 

any doubts about the validity of Newtonian Mechanics, Einstein started from the 
assumption that Maxwell’s Equations of electricity and magnetism were a fundamental 
law of physics that were valid in any reference frame, and then set about re-writing 
Newton’s Laws (generalizing them, actually) to assure that Maxwell’s Equations would 
be valid in any reference frame (hence the title of Einstein’s third paper in 1905.) 

 
The argument goes like this: If Maxwell’s Equations are valid for observers in any 

inertial reference frame, then not only the form of the equation but also all the constants 
should be valid in any reference frame. Two of the constants in particular – the permittivity 
of free space 0, and the permeability of free space 0 – when combined together give a value 
3.0x108 m/s, which is the speed of light when it propagates through a vacuum. Based on 
the fundamental Principle of Relativity (above), the conclusion is staggering: if Maxwell’s 
equations formulate a fundamental law of physics, then the Relativity Principle implies 
the following consequence: 

 
 

The invariance of the speed of light:  The speed of light in a 
vacuum c is measured to be 3.0x108 m/s by any observer in any 
inertial reference frame.  

 
 

Though this statement runs counter to our intuition, based on common experience, it has 
been verified experimentally – for example, in 1895, an experiment by Michelson and 
Morley indicated the invariance of the speed of light in vacuum.  
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Consider the following sample problems: 
 
 
 

Example  1.1. Classical calculation of relative velocities.    
(a)  Piper is running directly towards Kai’l with a constant speed of 5 m/s with respect to 
Kai’l. While still running, Piper throws a ball directly towards Kai’l. If the speed of the 
ball is 15 m/s relative to Piper, how fast is the dart moving in Kai’l’s reference frame? 

 
Solution :  The answer is what you would think – simply add 
the speeds to find that the blow dart travels at a speed of  
20 m/s from Kai’l’s perspective. 
 

(b) Kelsey picks up her ball and aims it in Sophia’s direction. Sophia quickly retreats, 
running away from Kelsey with a constant speed of 5 m/s. While standing still, Kelsey 
throws her ball towards Sophia at a constant speed 15 m/s measured from Kelsey’s 
reference frame. How fast is the ball moving in Sophia’s reference frame? 

 
Solution:  Again, the result is what you would think – simply 
subtract the speeds to find that the blow dart travels at a speed 
10 m/s relative to Sophia. 

 
 
Example  1.2. Speeds of light pulses. Andrew is traveling to Saturn. Approaching the 
planet at a speed of 2.0x108 m/s (relative to the planet), he sends a beacon of light to Jesse, 
who is stationed on Saturn. This pulse of light leaves Andrew’s ship with a speed  
3.0x108 m/s relative to the ship. How fast is the pulse moving relative to Jesse? 

 
Solution:  Classically, you should expect that Jesse would view 
the pulse as moving with a speed of 5.0x108 m/s. But this is 
wrong. Instead, from Jesse’s reference frame, the pulse is 
moving with a speed of 3.0x108 m/s!  That’s just the way it is 
with light pulses moving in a vacuum – everyone measures the 
same speed of 3.0x108 m/s, regardless of their motion. 
 

 
 
Hopefully, you find the results of Example 1.2 to be strange – there is nothing in our 

everyday experience that would lead us to expect such a result. But numerous 
experiments have measured the speed of light from a wide variety of reference frames, 
and the results always agree with the statement of the invariance of c.  
 

That the speed of light (in empty space) does not depend on the speed of its source 
has been demonstrated so convincingly and the value of the speed measured so accurately 
that the value is now defined to be exactly 299,792,458 m/s. By combining this definition 
of c with the definition of the second (in terms of an atomic clock), we no longer need an 
independent definition of the meter. 
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C. Units 
 

When working with relativity, it is convenient to express lengths in terms of distance 
traveled by light in one unit of time. A “light year” for instance is the distance that light 
travels in one year. An analogy would be to say that the distance between Olympia and 
Portland is “two car hours” (i.e., it takes 2 hours to get to Portland in a car driving at 
highway speeds). In fact, you will often hear people using time directly to express a 
distance:  “Oh, it’s 2 hours to Portland from here.”   

 
We will abbreviate these units as lt·s, lt·min, lt·yr, …  for light-second, light-minute 

and light-year, respectively. Using these units for distance, we can express speeds in terms 
of lt·s/s, lt·min/min, lt·yr/yr, etc. Since the speed of light c = 1 lt·s/s = 1 lt·min/min = 1 
lt·yr/yr, …, the speed of a particle in these units is simply the speed expressed as a fraction 
of the speed of light. 

 
 
 

Example 1.3. Conversion from light-seconds/second to meters/second. Fiona is traveling 
at a speed of 0.25 lt·s/s. Find Fiona’s speed in units of m/s. 

 
Solution:  Use the fact that 1 lt·s/s is equal to about 3.00 x 108 m/s. 
Then convert units as follows: 
 

  m/s100.75
lt·s/s1

m/s103.00
lt·s/s0.25 8

8




   

 
 
  In this example, Fiona has a speed v = 0.25 lt·s/s. This same speed could be expressed 

as v = 0.25c. In fact, we will typically express velocities as a fraction of the speed of light c. 
 
D. Relativity of time intervals 

 
The most startling consequence of the invariance of the speed of light is that it forces 

us to abandon the notion of absolute time. This means the time interval between two 
events depends on the velocity of the clocks used to measure the interval. The following 
thought experiment should help you understand this concept of the relativity of time 
intervals. 

 
Imagine three identical clocks constructed as follows. Each clock contains a light 

source that emits a pulse of light toward a mirror some fixed distance away (see Figure 
1.1(a)). The mirror reflects the pulse back toward the source. When the reflected pulse 
returns to the source and hits a triggering device, the source immediately fires a second 
pulse, which reflects from the mirror and triggers a third pulse, and so on. A count 
registers in a counter for each return pulse so the number of counts becomes a measure of 
elapsed time. 
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We place two of these light clocks, A and B, a fixed distance apart and at rest in a 

reference frame attached to the constant velocity Earth. We put the third clock, D, on a 
spaceship traveling at a constant speed v relative to the Earth (see Figure 1.1(b)), and 
perpendicular to the direction of travel of the light pulse in the clocks. 

 
Suppose clock D emits a light pulse at the exact instant it passes clock A. Also suppose 

that the distance between A and B is such that clock D passes clock B at the precise instant 
clock D’s reflected pulse returns to the source. We therefore have two events:  Event #1 = 
“clock D passes clock A” and Event #2 = “clock D passes clock B.”  We label the time 
interval between these two events – measured by clock D – as Dt . The quantity Dt  is 
called the proper time interval between the two events:   

 

PROPER TIME  IS DEFINED AS THE TIME MEASURED ON A 

SINGLE CLOCK THAT IS PRESENT AT BOTH EVENTS. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1  a) A light clock used in the thought experiment. b) Light clock D passes rest-
frame clocks A and B. Dashed line shows path of D’s light pulse as observed in A and 
B’s rest frame. 

 
In the case discussed above, clock D measures the proper time. In our particular 

arrangement, the proper time is exactly one tick. 
 
We now pose the crucial question, the answer to which is the key to understanding all 

of special relativity: 
 

What is the elapsed time ABt  as measured by clocks A and B 
for clock D to travel from A to B? 

 
“Simple,” you might think. “The answer is obviously exactly one tick, the same as that 
measured by clock D, right?”  Not so simple. As we will see, the concepts of absolute time 
(i.e., everyone and everything measures the passage of time the say way) is a casualty of 
the invariance of the speed of light. 

 

(a) (b) 

A B D 
v 
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For the question posed above to have any meaning, clocks A and B must be 
synchronized; i.e., observers in the Earth’s reference frame would say that the two clocks 
are reading the same time. (Note: this is not a trivial matter – we will discuss 
synchronization more fully in the next chapter.)  The two-clock time ABt  is then the 
difference between the time reading on Clock A at Event #1 (clock D passes clock A) and 
the time reading on Clock B at Event #2 (clock D passes clock B).  

 
In clock D’s reference frame, clock A passes D first and then clock B passes D. The time 

interval between these events is Dt  on clock D and therefore the light pulse in clock D 
travels a round-trip distance equal to Dtc  . But from figure 1.1 this same pulse (the one 
inside clock D) travels a longer, zig-zag path when viewed from the frame in which clocks 
A and B are at rest. Because of the invariance of the speed of light, this longer distance must 
translate into a longer time interval. This means the round trip time for clock D’s pulse is one 
tick as measured on clock D, but it is more than one tick when measured on clocks A and 
B. In other words, the elapsed time between the event “clock D passes clock A” and the 
event “clock D passes clock B” is longer when measured with the two clocks A and B than 
when measured with the single clock D. 

 
 
 
 
 
 

 
 
 
 
Figure 1.2  Derivation of the proper time relation. ABt = elapsed time on clocks A and 
B; Dt  =elapsed time on clock D. 

 
How much longer is the two-clock time interval ABt  measured on the two clocks A 

and B than the proper time interval Dt  measured on the single clock D which is present 
at both events?  

 
We can find out by looking at the path taken by the pulse of light in clock D viewed 

from C’s reference frame and from A and B’s reference frame (see Figure 1.2). As we’ve 
already seen, in clock D’s frame the pulse travels straight up and down along the vertical 
line in the figure and the total round-trip distance is Dtc  . The same pulse, traveling for 
time tAB relative to A and B travels the total zigzag distance ABtc  . Clock D itself travels 
a distance ABtv   relative to clocks A and B while the pulse makes one round-trip in D.  

 
Therefore, using the Pythagorean theorem on either small triangle in Figure 1.2, we 

find 

    
2

AB
2

D
2

AB

222






 







 







  tvtctc

         

A B 
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from which we solve for the proper time  to obtain 

 
2

AB2

2

ABD 11 







c
v

t
c
v

tt  .      

 
This relation can be written in the general form: 

 

    

2

1 





  c

v
tt clocktwoproper   (1.1)              

  
 

This very important relation is sometimes called the “proper time relation” or the 
principle of “time dilation.”  Qualitatively, it expresses the fact that different observers 
measure the passage of time differently, depending on their relative motion and 
on the interval measured. And recall that our starting points were these three simple 
things: (1) the invariance of the speed of light; (2) that distance = (speed)  (time); and (3) 
the Pythagorean theorem. 

 
Hidden inside Equation (1.1) is another result from special relativity; namely, no object 

can travel at a speed greater than c relative to any other object or reference frame. A 
superluminal speed (|v| > c) would result in an imaginary proper time, something that 
has no physical meaning. This speed limit is imposed by energy considerations as well (it 
would take an infinite amount of energy to accelerate an object with mass1 to a speed v = 
c relative to an observer, and more than an infinite amount of energy to achieve a speed v 
> c). Therefore, because |v|  c, the proper time interval propert  between two events is 

always smaller than the two-clock time interval clocktwot   measured in a frame that 

requires two synchronized clocks for measurement. 
 

 
Example 1.4. Time dilation. Anthony and Jenna are traveling on a train that moves with 
a constant speed of 1.8x108 m/s (= 0.6c) relative to the ground. They pass a parked VW 
Beetle at which point the two of them simultaneously yell, “Punch Buggy Red!” and poke 
each other on the shoulder. Three seconds later, Jenna yells, “Jinx!”  What is the time 
between these two events according to Melody, who is inside the parked VW? 

 
Solution:  The key question – does anyone measure the proper 
time? To answer this, write this down in terms of events.  
Event A = Anthony/Jenna poke each other; Event B = Jenna 
jinxes Anthony. In this example, Anthony and Jenna are at both 
events (not Melody in the VW), so Anthony and Jenna measure 
the proper time interval, which was given to be 3 s. So, we are 

                                                 
1 A photon of light can be considered an “object” that travels at a speed c, but this is a massless object. 
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given propert  and are asked to solve for clocktwot  , which is the 

time interval measured by the person in the car. We use equation 
(1.1): 
 

  
2

1 





  c

v
tt clocktwoproper  

  
2

1 







c
v

tt VWtrain  

  
22 6.0

1

s3

1 




















c
c

c
v

t
t train

VW   

                             

 
s75.3

8.0
s3

64.0

s3

36.01

s3

6.01

s3
2










 

 
 
In this example, the people on the train measured the proper time because they were 

at both events, so the time interval is smaller from their reference frame. Be careful, 
though:  sometimes the observer described as stationary measures the smaller time 
interval – it all depends on what the events are and who happens to be present at both of 
them. Note also that we expressed v as a fraction of the speed of light – it makes things a 
lot simpler to write v in this manner, as discussed previously. 
 

Think About This #1.2:   
In the previous example, the proper time is smaller than the two-clock time. Will the 
proper time always be smaller than the two-clock time, or will this depend on the 
situation? 
 
Think About This #1.3:   
In the previous example, it is clear that Anthony and Jenna on the train were at both 
events, so measured the proper time. We identify Melody to measure the two-clock 
time. But what does it mean to say that Melody measured the two-clock time? 
 

 
E. Relativity of distance measurements 

 
One thing that we have encountered repeatedly is the claim that relativity breaks 

down the distinction between distance and time. In fact, in relativity, distance and time 
are really just flip sides of the same coin. And as we will see now, you can’t change our 
conception of time without making a similarly dramatic change in the way we view 
distances and length. 
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Consider the following thought experiment:  a train is moving on a track, with 
observers Emmy and Maria at the front and back end of the train. Emmy and Maria have 
measured the length of the train with a long tape measure that they carry with them on 
the moving train, and find the length to be trainL . The train goes past observer Sophie who 

is standing next to the track with a stopwatch (see figure 1.3). Relative to Sophie in the 
“track reference frame”, the train (and Emmy and Maria) is moving with a speed v. From 
the “train reference frame”, of course, it is Sophie and the track that are moving at a speed 
v in the opposite direction. 

 
 
 
 
 
 
 
 

Fig. 1.3  Sketch of train for relativity of length thought-experiment. 
 
Let’s say that Sophie wants to measure the length of the train. She can use her 

stopwatch to do this:  since distance = (speed)  (time), the length of the train is simply 
the speed v times the time interval between when the front of the train passes and when 
the back of the train passes. Let’s consider two events:  Event A = Emmy at the front of 
the train passes Sophie; Event B = Maria at the back of the train passes Sophie.  

According to people on the train, the time between the two events 
v

L
t train AB , 

where trainL  is the previously-measured length of the train as measure by Emmy and 

Maria who are at rest with respect to the train – this is how far Sophie moves between the 
events according to train observers.  

 
Think About This #1.4:   
Why do the observers on the train measure the time between the two events to be the 
length of the train divided by the speed? 
 
As we saw in the previous section, Sophie measures the proper time (as she is at both 

events), which is a smaller time interval than the two-clock time measured by the train 
observers: 

2

AB

2

1

1















 

c
v

tt

c
v

tt

Sophie

clocktwoproper

 

 
Based on this result, Sophie determines the length of the train via distance = (speed)  
(time)  to be:  

v 

Maria Emmy 

Sophie 
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And since, from above, we know that trainLtv  AB , we obtain: 

 
2

1 
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





c
v

LL trainSophietoaccording  

 

The length of the train as measured by an observer by the side of the track is less 
than the length of the same train as measured by people moving with the train. 

 
We can write this relation (referred to as the Lorentz contraction or simply length 

contraction equation) in more general terms: 
 

     

2

1 







c
v

LL restother            (1.2) 

          
 

where restL  is the length of an object as measured by observers in a reference frame 

where that object is at rest, and otherL  is the length as measured by observers in a different 

reference frame. Note that an object is always largest when measured from its own 
reference frame, and shorter when it is measured in a reference frame in which it is 
moving.  

 
 

 
 

Example 1.5. Length contraction. Sam and Allen are standing on a train and determine 
the length of the train to be 200 m. Alex and Oliver, at rest in the track reference frame, 
observe that Sam, Allen and the train move past them at constant velocity v . Alex and 
Oliver determine the length of that same train to be 120 m. What is the velocity v  of the 
train as observed by the track observers? 

 
Solution:  The key question – does anyone measure the rest 
length? Be careful here – though Alex and Oliver are described 
as at rest in the problem statement, they are not at rest with 
respect to the object being measured. As described above, the 
rest length of the train is the length of the train as measured by 
observers in a reference frame where the train is at rest; in this 
case, Sam and Allen measure the rest length of the train.  We use 
equation (1.2) and solve for velocity: 
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Think About This #1.5:   
If we had incorrectly identified the restL  and the otherL measurements, what would we 

calculate for the velocity? What general conclusions can we make about the size of 

restL  compared with the size of otherL ? 

 
 
 
Several comments are in order. (1) You can’t have time dilation without length 

contraction  the two necessarily go hand-in-hand. This is a recurring theme of relativity 
– Einstein’s theory can’t be taken “a la carte”; rather, it is all or nothing. Einstein realized 
that if any single prediction of relativity were ever refuted, then the entire theory would 
have to be discarded. (2) Length contraction is not an illusion or merely a matter of 
perception. In the example, the length of the train doesn’t just appear to be smaller in the 
track’s reference frame; rather, it really is smaller in that reference frame.  

 
F. Relativistic Velocity Transformations 
 

Let’s say that two spaceships leave Earth. The USS Zaphod leaves the Earth going in 
one direction with a speed 0.8c relative to the Earth. The USS Beeblebrox leaves the Earth 
going in the opposite direction with a speed –0.8c relative to the Earth. How fast is the 
speed of the Zaphod from the reference frame of the Beeblebrox? Based on classical principle 
of velocity addition, you might expect the answer to be 1.6c. But this conflicts with a result 
that we deduced from Einstein’s theory of relativity which states that no object can travel 
faster than the speed of light relative to any other observer (see the discussion preceding 
Example 1.4). It is clear that it is necessary to replace classical laws for addition and 
subtraction of velocities with a more general, relativistic transformation. 
 

 The need for a relativistic approach to velocity addition and subtraction was 
already hinted at earlier. The principle of invariance of the speed of light requires that all 
observers (in any reference frame) measure the same speed for a pulse of light. So, we 
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can’t simply add and subtract velocities. On the other hand, common experience shows 
us that for non-relativistic speeds, simple addition and subtraction works fine. So, we 
need a velocity transformation relation that reduces to the classical result for small speeds, 
but which prevents anything from traveling faster than the speed of light. It turns out that 
this can be accomplished by taking the classical result and dividing by a relativistic 
correction that becomes significant (i.e., not just 1) for speeds close to c. 

 

Figure 1.4 shows the scenario that we are discussing. Two reference frames are 
defined: an unprimed frame denoted by observer A and a primed frame denoted by 
observer B on a spaceship moving with a speed v relative to observer A. They are both 
measuring the speed of the same object. Observer A says the object is moving with a speed 
uobj while observer B says the ball is moving with a speed u’obj. By convention, we’ll use v  
for the speed of reference frames and u  for the speed of objects as measured within 
reference frames. 
 
 
 
 
 
 
 
 
 
Figure 1.4  An object moving in the x-direction relative to both unprimed and primed 
frames. The speed of the object is measured to be uobj from the reference frame of 
observer A and u’obj from the reference frame of observer B. 
 

The question is how uobj, u’obj and v are related. The result is a velocity transformation 
equation, 
 
 
                 (1.3)             
 
 
Equation (1.3) can be used to relate an object’s velocity in one frame to that as viewed in 
another frame. 
 

We won’t derive equation (1.3) rigorously here. Rather, note that if the object is a 
pulse of light, then u’obj = c, and equation (1.3) reduces to: 

 

   c
vc
vc

c
c/v
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c/cv

vc
uobj 














11 2
. 

 
Both observers measure the object to have a speed c, so, the invariance of the speed of 
light is preserved in this transformation.  
 

u’obj from B’s frame, 
uobj from A’s frame 

v 

Unprimed 
observer A 

Primed 
observer B 

21 c/vu

vu
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obj

obj
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  
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Note that the numerator in (1.3) is the result that you would get classically, whereas 
the denominator is a relativistic correction. Also, note that if either the object or the 
primed observer are traveling at speeds that aren’t a reasonable fraction of the speed of 
light, then the denominator of (1.3) is very nearly 1, so we recover the classical result for 
“everyday” speeds.  

 
We’ll show how to work with this relation in the next example. 
 

 
 

Example 1.6. Nacia throws a really fast fastball while riding on a really fast train. From her 
reference frame (i.e., the train’s frame) the ball moves toward the front of the train with a 
speed u’ball = 0.7c. The train itself is moving relative to the ground with speed v = 0.8c. How 
fast is the ball moving relative to someone on the ground? 

 
Solution. Classically, the speed as viewed from the ground would be 
u’ball + v or 1.5c. (This is the numerator of Eq. (1.3).)  But, of course, this 
isn’t possible in a universe where nothing goes faster than c. Using Eq. 
(1.3): 
 

   c.
).)(.(

c.c.

c/vu

vu
u

ball

ball
ball 960

80701
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1 2
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
  

 
Note that the relativistic correction keeps the speed less than c.  
 
 

Think About This #1.6:   
What if instead of a ball, Nacia “threw” a beam of light? How fast would it be moving 
from the train’s reference frame? How fast from the ground’s reference frame? 
 
 
 
 
 
 
If a problem gives you the speed as measured by the unprimed observer, you can use 

the following inverse transformations to get the speed as measured by the primed 
observer: 
 
                             
              (1.4) 
 
 
 
Please don’t panic trying to keep track of u’s and v’s and primes and unprimes. You don’t 
really need to write down these relations or try to figure out which speed is v, which speed 
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vu
u

obj

obj
obj




  



R1.16    RELATIVITY 1:  BASIC POSTULATES                                        
   

is uobj and which speed is u’obj. There is a very simple way of handling all of these problems. 
No matter which velocity you are looking for, the answer is always: 

 

   
correctionicrelativist
resultclassical

, 

   
where the relativistic correction is simply “1 + (product of other two speeds, without the 
c’s)” or “1 – (product of other two speeds, without the c’s)”. You will be given two 
velocities, and you’ll be looking for the third one. Just figure out the answer classically, 
then divide by the correction. The only question then is whether to use the “+” or “–“ in 
the correction. The rule:  if you added magnitudes of velocities in the numerator, then you 
use the “+” in the denominator, and if you subtracted magnitudes in the numerator, then 
you use the “–“ in the denominator. This will take care of any velocity addition or 
subtraction that you need.  
 
G. Experimental evidence 

 
Most people are understandably skeptical when they first read about the predictions 

of special relativity. This is to be expected, since we do not experience time dilation or 
length contraction effects on a daily basis. For these effects to be significant, you need 
relative velocities that are significant fractions of the speed of light. Looking at both 

equations (1.1) and (1.2), the key piece is the factor 
2

1 







c
v

, which is almost identically 

equal to 1.00 for even the fastest velocities that people ever experience. This is an 
important of an aspect of relativity; namely, that it obeys classical correspondence, i.e., 
the results of relativity agree with Newton’s classical results for smaller velocities. 

 
Despite the fact that relativistic effects are almost negligible in personal “everyday” 

phenomena, there is ample experimental evidence that shows that Einstein’s predictions 
are correct. In every case where an experiment has tested the theory of relativity, the 
experimental results have always agreed precisely with the predictions of relativity. Some 
examples: 
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 Time dilation. Time dilation is the most tested aspect of relativity. The most direct 
test was performed by taking two identical atomic clocks, flying one around the world on 
a plane and leaving the other on the ground, then comparing their readings after the trip. 
As predicted by Einstein, the clocks had ticked off different times, and by precisely the 
predicted amount.2  Particle decay has also been used to test time dilation:  a type of 
particle that typically lives for a certain period of time has been shown to live significantly 
longer if accelerated to high speeds (relative to the ground); again, the difference in times 
agrees perfectly with relativity. And the Global Positioning System (GPS) – which 
involves a series of satellites with precise clocks – uses relativity extensively to keep the 
orbiting clocks synchronized with those in the GPS units on the Earth. Without relativistic 
corrections, GPS wouldn’t work! 

 
 The speed of light as a speed limit. This result is verified daily in particle 

accelerators. It is fairly straightforward for scientists to accelerate subatomic particles to 
speeds close to the speed of light. But no matter how much energy is added, the speeds 
never make it to or above c. Electrons, in particular, have been accelerated to speeds > 
0.9999c, but never up to or above c. 

 
 Length contraction. No experimentalist has managed to accelerate a train to 

relative speeds large enough to measure length contraction effects. (Trust us: you 
wouldn’t want to be anywhere near a train going this fast.)  But there is experimental 
evidence for length contraction:  (a) cosmic rays produced at the top of the Earth’s 
atmosphere somehow manage to make it to the surface of the Earth before decaying, 
despite the fact that they are very unstable. Some of these particles have lifetimes so short 
that even traveling at speeds close to c, they would be expected to decay long before they 
reach the ground. This can be explained using length contraction:  the distance from the 
top of the atmosphere to the Earth’s surface is significantly contracted from their reference 
frame, so there is no problem making it to the Earth’s surface before decaying.3  (b)  
Another piece of experimental evidence comes from electromagnetic theory – it turns out 
that you can explain why an electrical current produces magnetic effects by applying 
relativistic length contraction to the stream of electrons. The argument is too long to 
present here (especially since we haven’t covered electricity and magnetism yet), but 
suffice it to say that the results agree perfectly with an analysis based on length 
contraction. 

 
There are other experimental tests of other aspects of relativity. But, in general, it is 

worth remembering that relativity is not a series of different theories, but rather is a single, 
coherent, internally consistent theory. All of the predictions are inherently related to each 
other. So you can’t say, “Well, I’m fine with time dilation but I don’t buy length 
contraction.”  You simply can’t have time dilation without length contraction – they are 
the same thing.  

                                                 
2 Note that General Relativity plays a role here since the reference frames aren’t rigorously inertial, but the experiments 
took account of these general relativistic effects. 
3 This result can also be explained using time dilation, of course, since time dilation and length contraction are really the 
same thing. 
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PROBLEMS 
 
1) This problem gives you practice with converting units associated with speed. 

a)   A proton is traveling at a speed of 4.0 x 107 m/s. How many lts/s is this? 
b) A sub-atomic particle is traveling at 0.060 ltmin/min. Convert this to m/s.  

 

2)  You’ve likely noticed the importance of the factor  2/1 cv . 

a) Show that for cv 6.0 , then   8.0/1 2  cv .         

b)   When cv 8.0 , what is  2/1 cv ? 

c)   When   5.0/1 2  cv , what is v ? 

 
3)   Duck Dodgers hops in his spaceship and leaves the Earth at a constant velocity of 0.6c 

in an attempt to reach the newly discovered Planet X before aliens from Mars.  
a) Mission control on Earth sends an encoded message (a flashing beacon) to Duck 

Dodgers warning him about the progress of the Martian ship. The light pulses 
travel at a speed c relative to observers on the Earth. How fast are the pulses 
traveling relative to Duck Dodgers?  

b) Duck Dodgers doesn’t understand the message that he received, so he sends a 
radio wave message back toward the Earth asking for clarification. The radio 
signal is traveling at a speed c relative to the Duck. How fast is the signal traveling 
relative to observers on the Earth?  

c) The radio message is intercepted by Marvin the Martian who is behind Duck 
Dodgers but traveling in the same direction at a speed 0.8c relative to the Earth. 
How fast is the radio message relative to Marvin?  

d) At this point, you might be asking yourself “What was the point of this problem?”  
What was the point of this problem? 

 
4) Charlie travels at speed 0.50c to the right relative to Kyle. Zel is traveling at 0.70c to 

the left relative to Kyle. Calculate Charlie’s velocity relative to Zel.  
 
5) Leah and Daniel are returning home, traveling at a speed 0.75c relative to and toward 

the Earth. Leah is particularly anxious to get back to Earth, so Leah hops on the 
emergency shuttlecraft, which leaves the ship traveling at a speed of 0.75c, relative to 
Daniel. How fast is Leah traveling relative to the Earth? 

 
6) The Road-Runner travels to the right at 0.8c, and is chased by the Coyote moving at 

0.6c. How fast and in what direction is the Road-Runner traveling, according to the 
Coyote? How fast and in what direction is the Coyote traveling, according to the Road-
Runner? 

 
7) Jamie’s speed is measured at +0.6c relative to Joseph, who is at rest on the earth, and 

+0.8c relative to Mia, who is passing by in a rocket. Determine the speed of Mia’s 
rocket relative to Joseph on the earth. 

 



RELATIVITY 1:  BASIC POSTULATES                                R1.19 

8) Ashe is sitting in a spaceship moving at constant velocity 0.80 lt·s/s. They pass 
between two planets A and B in 1000 s, as measured by synchronized clocks on the 
planets. Calculate the elapsed time according to a clock carried on Ashe’s spaceship.  

 
9) Jorisha is sitting on a train. How fast does Jorisha have to travel relative to Pyxie and 

Leah, who are at rest relative to each other, in order that the elapsed time as measured 
on Jorisha’s clock is one-tenth the elapsed time measured by Pyxie and Leah?  

 
10) Mina is on a meteorite that is observed to travel a distance 1.00 x 105 lt·s in a time of 

6.00 x 105 s (distance and time measured relative to the Earth rest frame, velocity of 
the meteorite assumed to be constant). Calculate the elapsed time for this trip as 
measured by Mina. 

 
11) Margaret is in a car stopped at a traffic light. She beeps the horn, and 2.4 s later beep 

the horn again   (1 s = 1 microsecond = 10-6 s). What is the time between the two beeps 
as measured by Krishna, who is passing by the car in a ship moving at a constant 
velocity 0.8c?  

 
12) A muon is an unstable elementary particle which decays soon after being created. One 

such muon travels at 0.98c towards the earth. According to clocks in the muon’s rest-
frame, the muon lives 1.8 x 10–6 s (in other words, it decays 1.8 x 10–6 s after being 
created). How long does the muon live according to clocks in the Earth’s rest-frame? 

 
13) Harry travel in a rocketship moving at a constant velocity of 0.80c from Earth to a 

nearby star, Alpha Centauri, a distance of 4.00 lt·yr. Note: velocity and distance are 
measured according to the Earth/Alpha Centauri rest frame. 
a) How long does the trip take according to Ron, who is at rest relative to Earth?  
b) How long does the trip take according to Hermione, who is on Alpha Centauri 

and at rest relative to Alpha Centauri? 
c) Calculate the time for the trip as measured by Harry. 
d) Based on your answer to c), calculate the distance between Ron (on Earth) and 

Hermione (on Alpha Centauri), as determined by Harry using the relation distance 
= (speed)  (time), where distance, speed and time are all measured from their 
reference frame.  

e) Calculate the distance between Ron and Hermione from Harry’s reference frame, 
but this time use length contraction. You should end up with the same result as 
for d). Hopefully, this will convince you that length contraction and time dilation 
are really the same thing (i.e., you can’t have one without the other). 

 
14) Sheldon (who loves trains) is standing next to a train track. A really long train moves 

by traveling really fast (0.9c, in Sheldon’s frame). When the front of the train passes by 
him, Sheldon starts his stopwatch. When the back of the train passes by him, Sheldon 
stops his stopwatch and notices that 0.0025 s have elapsed. 
a)  According to Sheldon, how long is the train? 
b)  How long is the train according to Amy and Penny (Penny, Penny), who are sitting 

on it?   
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15) There is a supergiant star named Betelgeuse which (from the Earth’s reference frame) 
is 80 lt·yr away (assume the distance between Earth and Betelgeuse does not change 
for the situations described below). Betelgeuse is located in the constellation Orion 
and could go supernova4 anytime in the next million years. 
a) John travels toward Betelgeuse at a constant speed 0.8c relative to the Earth-

Betelgeuse reference frame. What is the separation between Earth and Betelgeuse 
in John’s reference frame? 

b) Robin is traveling toward Betelgeuse, and measures the Earth-Betelgeuse distance 
to be 23 lt·yr. How fast is Robin traveling relative to the Earth? 

 
16) A spaceship crew wants to make the trip from Earth to Alpha Centauri (4.00 lt·yr apart 

in the Earth/Alpha Centauri rest frame) in only 2.0 years as measured by clocks on 
board their spaceship which travels at constant velocity. Determine how fast the crew 
must travel relative to Earth. **note that this is a challenging problem, both 
conceptually and algebraically, given only the tools introduced in this chapter**   

 
 

                                                 
4 That will be a very exciting event, though it will take 80 years for us to know, since that is the time it will take light from 
the event to reach the earth. We’ll learn something about supernova in Chapter 4. 



Relativity 2:  Spacetime  
 
Learning Goals 
 

1. Calculate a spacetime interval between two events, and classify the 
interval as space-like, time-like or light-like. Use these classifications 
to determine whether or not the two events are causally linked or can 
have their time-order or space-order reversed. 

2. Use the invariance of the interval to relate distance and time intervals 
between two events in one reference frame to those in a different 
frame. 

3. Draw a spacetime diagram based on descriptions and numerical 
values.  

4. Determine the velocity of an object from the reciprocal of the slope 
of its worldline on a spacetime diagram.  

5. Use a space-time diagram to determine whether the space-time 
interval between two events is space-like, time-like, or light-like. 

6. Use a space-time diagram to determine time- and spatial-ordering of 
events, including whether or not events are simultaneous or at the 
same location in particular frames. 

 
Previously, we introduced the basic ideas of relativity along with some of the most 

dramatic implications of the theory. But the predictions of time dilation and length 
contraction are merely special cases of a much broader theory. In this chapter, we discuss 
the idea of spacetime, which blends time and space together. We introduce the spacetime 
interval, a quantity that is one of the fundamental invariants in relativity, and we use this 
interval to relate distance and time measurements between different observers. We also 
introduce spacetime diagrams, which provide a graphical way of illustrating relativistic 
phenomena, particularly the relativity of simultaneity.  

 
A. Spacetime intervals 

 
As we have seen, observers in different reference frames disagree about time and 

distance measurements. But there are a few quantities referred to as invariants upon which 
all observers agree regardless of their reference frames. One of these invariants was 
discussed in the previous chapter; namely, the invariance of the speed of light in a 
vacuum. It turns out that distance and time can be folded together to make another 
invariant, referred to as the invariant spacetime interval ( )2S∆ , defined by 

 
])()()[()()( 22222 zyxtcS ∆+∆+∆−∆=∆ . 

 
The term in square brackets might be familiar to you: it is the square of the distance 

between two points in a three-dimensional Euclidean space as determined by using the 
Pythagorean theorem. While you may not recognize it in three dimensions, you do know 
its two dimensional equivalent. So in some sense the equation above is like the 
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Pythagorean theorem in four dimensions. As we have been considering motion along a 
straight line, the equation above simplifies to 
 
               (2.1) 

  
 
where t∆ is the time between two events, tc∆ is a distance (specifically the distance 

that light could travel in the time between those two events), and x∆  is the distance 
between those same two events, all as measured in the same reference frame. 

 
Think About This #2.1:   
Why does limiting our consideration of motion to be along a straight line allow for 

])()()[()()( 22222 zyxtcS ∆+∆+∆−∆=∆  to simplify to 222 )()()( xtcS ∆−∆=∆ ? 
 
Note that 2)( S∆ can be positive, zero or negative. If 2)( S∆  is positive, then the interval 

is called time-like since the first term – with t∆  in it – dominates. Similarly, negative values 
of 2)( S∆  correspond to space-like intervals, and if 0)( 2 =∆S , the interval is called light-
like. Qualitatively, an event is light-like if a pulse of light could travel directly between the 
two events. This can be seen from Eq. (2.1):  if 0)( 2 =∆S , then 

 

tcx
xtc

∆±=∆→
∆−∆= 22 )()(0  

 
as would be expected for a pulse of light traveling a distance x∆  in a time t∆ .  

 
Two events could be causally-linked (i.e., event A actually causes or contributes to 

event B) if the spacetime interval between them is either light-like or time-like. In fact, for 
a time-like event, the spacetime interval is the proper time. If two events are separated by 
a space-like interval, then no information can travel between the two events since it would 
require superluminal (v > c) information transmission, and nothing (especially 
information) can travel faster than light relative to any observer. So events can’t be 
causally linked if the square of the spacetime interval between them is negative. 

 
 

Example  1. Causality and intervals. In the year 2030, a mother and her daughter are 
watching the 7th game of the World Series from a Moon base at the Sea of Tranquility. The 
daughter sneezes and then watches in horror as 2.0 s later Derek Jeter, Jr., of the Boston 
Red Sox strikes out with the bases loaded to end the series. Distraught, the daughter bursts 
into tears. “What’s wrong?” her mother asks. “It’s my fault that the Red Sox lost!  My 
sneeze caused Jeter to strike out!”  What argument should the mother use to assure her 
daughter that she is not personally responsible for yet another heart-breaking1 Red Sox 
loss?   

 

1 Sports fans might like to know that this example was written in 2003, before the curse was broken. 

222 )()()( xtcS ∆−∆=∆  
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Solution:  The mother should first point out that the distance 
between the Earth and Moon is 3.84x108 m = 1.3 lt∙s. As the 
mother & daughter received the TV signal of the strikeout 2.0 s 
after the sneeze, in their reference frame the strikeout must have 
actually occurred only 0.7 s after the sneeze. (It takes the TV 
signal 1.3 s to make it from the Earth to the Moon.)   
 
Now, the mother should calculate the spacetime interval: 
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So, the mother should pat the daughter on the head and say, “So, 
you see honey – you can’t have caused Jeter to strike out because 
the spacetime interval between your sneeze and his strikeout is 
a space-like interval!”  (That should be very comforting to all 
concerned). 

 
 
Don’t worry about the fact that 2)( S∆  is negative for space-like intervals. The 

definition of 2)( S∆  in equation (2.1) is chosen so that for time-like intervals, the interval 
S∆  itself is the proper time (as we’ll discuss later), which is convenient for our purposes. 

But the interval could have equally been defined as 222 )()()( tcxS ∆−∆=∆  in which case 
2)( S∆  would be negative for time-like intervals (some people do, in fact, define 2)( S∆  this 

way). In fact, one could define two different intervals:  222 )()()( xtcS ∆−∆=∆  for time-

like intervals and 222 )()()( tcxS ∆−∆=∆  for space-like intervals. We will stick with 
equation (2.1). 

 
As stated earlier, 2)( S∆  is an invariant – observers in different reference frames will 

agree on the value of this interval for any two events: 
 
    

                                                (2.2) 
 

 
where x∆  and t∆  are the distance and time between two events as measured in one 

reference frame, and x′∆  and t′∆  are the distance and time between the same two events 
as measured in another reference frame. 
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Think About This #2.2:   
What does it mean for a quantity to be invariant? What are two invariant quantities we 
have covered so far in our relativity reading? 
 

  
The invariance of the spacetime interval is important for several reasons. 

First, the invariance of the interval helps to further clarify the intimate 
connection between distance and time in relativity. Any disagreements between 
different observers about the time interval between events must be 
accompanied by a corresponding disagreement in the distance in order to keep 
the interval invariant. Second, if an interval is space-like or time-like or light-
like as viewed in one reference frame, then it is the same kind of interval as 
viewed in any reference frame. This makes sense:  if two events cannot be 
causally-linked in one reference frame, for instance, it would be nonsensical to 
think that they would be causally-linked as observed by someone in a different 
reference frame. Finally, the interval can be used to determine how events are 
viewed in one reference frame, given information in a different frame. As an 
example, we refer back to a problem from a previous assignment, in Example 2 
below. 

 
 
Think About This #2.3:   
Pause for a moment to consider the bolded passage above. In your own words, explain 
why the invariance of the spacetime interval is useful/important. 
  

 
 
Example  2. Using the interval. A spaceship crew wants to make the trip from Earth to 
Alpha Centauri in only 2.0 years as measured by clocks on board their spaceship. (a)  How 
long does the trip take according to Earth-frame observers?  (b)  How fast must the 
astronauts travel relative to Earth?  

Solution:  You might have done this problem in the previous 
chapter, where it was conceptually and algebraically 
challenging. Here, we do the same problem but using the 
spacetime interval, which makes it less complicated. 
 
(a)  Let’s begin by identifying events. We have the Event S/E 
where the Spaceship and the Earth pass each other. We also have 
the Event S/AC, where the Spaceship and Alpha Centauri pass 
each other. We’ll call the Earth/Alpha Centauri reference frame 
the unprimed frame, and the Spaceship the primed frame.  
 We’ll begin by looking at the events from the reference 
frame of the Earth. We know from previous problems that the 
distance to Alpha Centauri is 4 lt∙yr as measured by observers 
on the Earth, so the distance between the events S/E and S/AC 
is given by x∆  = 4 lt∙yr, according to observers in the Earth 
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reference frame. We don’t know the time between the events 
S/E and S/AC in this frame (that’s one of the things we’re 
looking for, so t∆  is unknown.  
 Next, we’ll look at the events from the reference frame of 
the Spaceship. From the statement of the problem, we can see 
that we’re given the time between the two events in this frame, 
so t′∆ = 2 yr. What about x′∆ ?  Since the Spaceship is present 
at both events, it follows that x′∆  = 0.  
 
 
 Using the interval and its invariance equation (2.2), we have 
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(b) Since we know the distance the Spaceship traveled and the 
time it took to make the trip, all in the same reference frame, we 
can determine its speed. The speed of the astronauts’ ship is the 
distance it traveled divided by the time it traveled, where we 
have now ensured that the distance and time are measured in 
the same frame. 
 

c
t
xv 894.0yr/yrlt0.894

yr4.4721
yrlt4

=⋅=
⋅

=
∆
∆

=  

   
 
 
As you might have guessed from this example, the relations from the previous chapter 

(time dilation and length contraction) are both special cases of the more general invariance 
of the spacetime interval. The proper time relation equation from the previous chapter 
corresponds to a situation where one of the observers is at both events.  

 
Let’s say that the observer in the primed reference frame is at both events (i.e., 

measures the proper time), so propertt ∆=′∆ . Since this observer is at both events, clearly 
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she measures the distance between the events to be zero, so 0=′∆x . In the unprimed 
frame, the distance between events x∆  is simply tvx ∆=∆  (distance = speed × time). 
Using the interval and its invariance, equation (2.2), we obtain: 
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which is, in fact, the proper time relation (1.1) with ∆t’ as the proper time (since the primed 
observer is at both events) and with ∆t as the two-clock time. Similar arguments can be 
used to show that the length contraction relation equation is a special case of the 
invariance of the spacetime interval for situations where ∆t or ∆t’ is zero. 
 
B. World Lines and Spacetime Diagrams 

 
The motions of particles, clocks, or whatever can be represented on a spacetime 

diagram. A spacetime diagram consists of a pair of perpendicular axes, with the vertical 
axis representing time and the horizontal axis representing x-position in an unprimed 
inertial reference frame. The x-axis is the direction of relative motion between this 
unprimed frame and another inertial frame called the primed frame. 

 
A plot of an object’s position vs. time on a spacetime diagram is called the world line 

of the object. Three world lines are shown in figure 2.1; a straight world line represents 
motion with constant velocity while a curved world line represents accelerated motion. 
An event is represented by a dot on the spacetime diagram. 

 
When drawing a spacetime diagram, make sure you use appropriate units. (Do not 

use meters for length!)  For time (which we use as the vertical axis on a spacetime 
diagram), we choose something appropriate to the time scale of the problem, like years, 
seconds, nanoseconds, etc. Then we must choose an appropriate unit of distance equal to 
that traveled by light in the chosen unit of time. For example, suppose we choose one 
second as the unit of time, then we would use one lt∙s (the distance traveled by light in 
one second) as the unit of distance. In these units the speed of light is c = (1 lt∙s) / (1 s) = 1 
lt∙s/s. In this method of handling the units, the world line for a pulse of light must have a 
slope that is numerically equal to +1 or –1. And no world line can ever have a slope with 
magnitude less than 1  that would correspond to an object traveling faster than light. 
Slopes can also be used to determine if the interval between two events is time-like, light-
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like or space-like. If a line were to be drawn connecting the two events, a time-like interval 
would correspond to a slope with magnitude greater than 1, a light-like interval would 
correspond to a slope with magnitude 1, and space-like interval would correspond to a 
slope with magnitude less than 1 (note that in this last case, that “line” drawn between 
the two events can’t be the world line of any real object, since nothing can travel faster 
than c). 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.1  A spacetime diagram with three world lines. The two world lines for light 
have slopes +1 and –1. 

 
Let’s use a spacetime diagram to display the world lines of the three-clock thought 

experiment of Ch. 1, Section C (see Figure 1.1 from that section and Figure 2.2 below). For 
example, put clock A at rest at x = 0 and clock B at rest at x = 0.60 lt∙s. The world lines for 
the stationary clocks A and B are then vertical lines at x = 0 lt∙s and x = 0.60 lt∙s. Let clock 
C travel with speed 0.60c in the positive x-direction. Because c = 1 lt∙s/s, clock C passes 
through x = 0 at time t = 0 s, and it passes through x = 0.60 lt∙s at time t = 1.0 s. It has 
traveled a distance of 0.60 lt∙s in a time 1.0 s. 

 
Notice in figure 2.2 that we have labeled the world line of clock C as the t’ axis. This is 

a general result:  the world line of a particular observer (say, someone traveling in a space 
ship) is the t’ axis for that observer. This can be understood by considering a person on a 
spaceship holding a ball. The world line for the ball is the same as the world line of the 
ship and person since they are all moving together. From the perspective of the astronaut, 
the ball remains right in front of him and isn’t moving anywhere, so it makes sense that 
that astronaut will say that the location of the ball remains at x’ = 0. And just as it is true 
that the points where x = 0 in the unprimed frame define the t-axis, so it is that the points 
where x’ = 0 in the primed frame define the t’-axis. 

  

World lines for light 

World line for a particle 

x 

t 

An event 
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Figure 2.2  World lines for the three clocks in the thought experiment of section A. 

Some comments are in order: 
 
1. A world line is nothing more than a plot of position versus time. If you ever find 

yourself stumped about how to plot a world-line, ask yourself:  “Where is the 
(whatever) at time t = 0 (i.e., what is its x value)?  Where is it at time t = 1?  At time 
t = 2?  …”  Then simply plot those points and connect them with a line. 

2. The slope of a world line is simply 1/v. Practically, this means that if you have a 
ship moving at a speed of, say, 0.5c, then the slope will be 1/v or 2.0 s/lt∙s. When 
plotting a world line, this means that you go up 2 and over 1 (or over 0.5 and up 
1). 

3. Don’t ever forget – nothing can travel faster than light, so there should never be a 
world line on your plot with a slope whose magnitude is less than 1. 

4. Remember:  events are plotted as dots. 
5. Label everything clearly. 
 
 
 
 

Example 3. Spacetime diagram corresponding to Example 1. Draw the spacetime 
diagram for the baseball scenario (Red Sox losing the World Series) shown in Example 1. 
Show the world lines for Derek Jeter, Jr., the girl and her mother and the TV signal. Also, 
show and label the following events:  A – girl sneezes, B – Jeter strikes out, and C – girl 
and mother see Jeter striking out. 

 
Solution :  The world lines for Jeter and the girl/mother are 
simply straight vertical lines since they aren’t moving in the 
Earth-Moon reference frame. If this isn’t clear, then answer these 

 t (s) 

0 

t’ 

x (lt-s) 

World line 
for clock A 

World line 
 for clock B 

World line  
for clock C 

0.5 

1 

0.5 1 
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questions:  if we put the Earth at x = 0 at time t = 0, where is the 
Earth at time t = 1 s?  Answer:  still at x = 0. At t = 2 s?  Answer:  
still at x = 0. The Earth’s world line is nothing more that a set of 
points where x is always zero. As for the girl/mother on the 
Moon, we already said in Example 1 that they are about 1.3 lt∙s 
away from the Earth. 
 
We know from the problem that the girl/mother see the 
strikeout 2 s after she sneezes. So, if she sneezes at t = 0 (it is 
arbitrary as to what we choose as the t = 0 time), then the TV 
signal arrives at t = 2 s. It must have been sent from the Earth at 
an earlier time, and since it travels at the speed of light, then the 
world line for the TV signal is a 45° line. The only thing left is to 
plot the three dots for the events. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that if you imagine a line between A and B, that line would 
have a slope with magnitude less than 1 (i.e., too shallow), 
indicating that nothing can travel between these two events, 
consistent with the result in Example 1 that the interval is space-
like and the corresponding events can’t be causally-linked.  

 
 
 

C. Ordering of events – the relativity of simultaneity 

Every event has a set of space and time coordinates. In Example 3 above, we would 
say that the event A (girl sneezes) occurs at time t=0 and location x = 1.3 ls. Similarly, we 
can determine the location and times of events B and C, all as measured by observers in 
the Earth-Moon reference frame. Let’s add one more event to the scenario:  let’s say that 
at time t = 0, the pitcher Pedro Martinez Jr., pitches the ball toward Jeter. In the diagram 
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below, we have added this event and labeled it P. In the Earth-Moon frame, we can say 
quite definitively that A and P are simultaneous and come first, then B, then C. Also, A 
and C happen at the same location, and P and B happen at the same location.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3  Extension of spacetime diagram in Example 3. 
 
Special relativity helps us deal with the following question:  how does an observer 

moving in a different reference view these same events?  We won’t worry here about the 
actual numerical values of x’ and t’ (the position and time as measured by a different 
observer), but we can say quite a lot about the ordering of events in space and time by 
looking at the spacetime diagrams.  

 
We have added another world line to Figure 2.3, namely, the world line for a 

hypothetical alien whizzing past the Earth just as the pitch is thrown. This alien is 
monitoring the game to try to understand human culture. We assume the alien is traveling 
at a speed 0.5c; hence, the world line has a slope of 2. 

 
We have already commented that the world line of an observer in a primed frame is 

simply the t’ axis for that frame, so we have labeled the alien’s world line t’. But where 
should we put the x’-axis and what scale should we put on it?  It turns out that to satisfy 
the invariance of the speed of light, we must draw the x’-axis at the same angle relative to 
the x-axis as the angle of the t’-axis relative to the t-axis. This means the slope of the x’-
axis is equal to the speed v of the primed frame relative to the unprimed frame. 

 
Recall that the t’-axis represents points where x’ = 0. It turns out that x’ is constant 

along any line parallel to the t’-axis. In other words, lines parallel to the t’-axis are equal 
location lines for the primed frame of reference, just as the t-axis and all lines parallel to it 
are each lines of equal location for the unprimed frame of reference. The same ideas work 
for events on lines parallel to the x or x’ axes  events on a line parallel to the x-axis are 

P 
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simultaneous in the unprimed frame, and events on a line parallel to the x’-axis are 
simultaneous in the primed reference frame. 

 
We can use these ideas to “read off” coordinates for events in both reference frames. 

As an example, let’s look at event C in Figure 4.3. We have already commented that in the 
unprimed frame, its x location is 1.3 ls and its time is 2 s. The coordinates of this event in 
the alien’s reference frame are determined by drawing lines parallel to the x’ and t’ axes 
(shown as dotted lines in Figure 4.3). The intersections of these construction lines with the 
opposing primed axis gives the x’C and t’C coordinates. The rules for determining 
coordinates can be summarized as follows: 

 
To find xC,  draw a straight line through C parallel to the t-axis and  
   read off where it crosses the x-axis. 
 
To find tC,  draw a straight line through C parallel to the x-axis and  
   read off where it crosses the t-axis. 
 
To find x’C,  draw a straight line through C parallel to the t’-axis and  
   read off where it crosses the x’-axis. 
 
To find t’C,  draw a straight line through C parallel to the x’-axis and  
   read off where it crosses the t’-axis. 

 
Using this type of construction, we can see that although events A and C occur at the 

same place in the unprimed (Earth-Moon) reference frame, event C happens to the left of 
the event A in the primed (alien) reference frame. This is easy to understand:  the alien is 
far from the Moon when event A happens, so A is far “to the right”, whereas the alien is 
close to the Moon when event C happens, so from the alien’s perspective, C isn’t so far to 
the right, i.e., smaller x’ coordinate. 

 
But what about the ordering of events in time?  We have commented that the 

invariance of the spacetime interval says that if two observers disagree about distances, 
then they will have to disagree about time intervals as well.  

 
Think About This #2.4:   
Look at the t’ coordinates for events P and A.  In the Earth-Moon reference frame, 
these events are simultaneous.  What about in the alien reference frame?  

 
 

We have said that any two events on a line parallel to the x’-axis are simultaneous in 
the primed frame of reference. Similarly two events that lie on a line parallel to the x-axis 
are simultaneous in the unprimed frame. However two different events cannot lie both 
on a line parallel to the x-axis and parallel to the x’-axis. Thus two events that are 
simultaneous in one frame cannot be simultaneous in the other frame. We explore this 
idea in the following example. 
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Example 4. Simultaneity is Relative. Einstein showed, with the following thought 
experiment, that two events which occur at the same time but at different places in one 
frame, occur at different times in another frame. 
 
   Imagine a train moving past a station. By chance, lightning happens to strike the front 
and back of the train at the same time according to observers on the station platform. Light 
pulses from these strikes travel toward the middle of the train, where a passenger 
observes their times of arrival. Do the light pulses arrive simultaneously or does one arrive 
before the other, and if so, which one? 

 
Solution :  Use a spacetime diagram, Figure 2.4, with the station 
at rest in the unprimed frame and the train at rest in the primed 
frame. The x- and x’-axes both lie along the track. The world line 
for the middle of the station is shown as the t-axis. 
 
   Because all parts of the train are at rest in the primed frame, 
we draw the world lines for the front and the rear ends of the 
train parallel to the t’-axis. Also, in Figure 2.4, we have chosen 
the world line for the passenger riding in the exact middle of the 
train to be the t’-axis. In the primed frame the front and rear 
world lines are then equidistant from the passenger, by 
definition. 
 
The lightning strikes occur at points R and F on the world lines 
of the rear and front of the train. Because each strike represents 
an event and because these two events occur simultaneously in 
the station frame, R and F must be drawn on the same horizontal 
line. We arbitrarily choose this line to be at t = 0. 
 
   The light pulses produced by the lightning strikes travel with 
speed c from the event F back toward the passenger and from R 
forward toward the passenger. The pulse from F is represented 
by a world line of slope –1 and the pulse from R is represented 
by a world line of slope +1. Figure 2.4 shows that the pulse from 
F arrives at the passenger’s world line (at F’) earlier (i.e. smaller 
value of t’) than does the pulse from R, which arrives at R’. 
 
   The passenger must conclude that the front strike occurred 
before the rear strike because she is sitting in the middle of the 
train, equidistant from R and F, and she knows the light pulses must 
have taken the same time (in her frame) to reach her. By the same 
argument, an observer on the station platform who was at the 
exact middle of the train at t = 0 when the strikes occurred, sees 
the pulses at the same time. This is shown on the spacetime 
diagram by the fact that the world lines of the pulses cross the 
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world line of the middle of the station at x = 0 (event M) at the 
same time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4 Spacetime diagram for a train moving at relative velocity of 0.6c. (World lines  
of light shown as dashed lines.) 
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PROBLEMS 
 
1) Three events are shown on the spacetime diagram. Event 

A occurs at 2 lt-s and 1 s, Event B occurs at 5 lt-s and 3 s, 
and Event C occurs at 3 lt-s and 5 s. 
a)  Label the events A, B, and C. 
b)  Calculate the value of the squared spacetime interval 

for each pair of events, i.e., find (∆SAB)2, (∆SAC)2, and 
(∆SBC)2. 

c)  Identify each interval as time-like, space-like, or light-
like. 

d)  In the frame shown, event A occurs before B, which occurs before C. Which pairs 
of events could have their time-order reversed (switching before and after) by 
choosing an appropriate reference frame? 

e)  In the frame shown, event B occurs to the right of C, which occurs to the right of 
A. Which pairs of events could have their space-order reversed (switching left and 
right) by choosing an appropriate reference frame? 

f)  Which events could be a "cause" for which other events? 
 
2) The figure shows a spacetime 

diagram with seven straight 
lines through the origin 
labeled with capital letters A 
through G. Various events are 
marked as points with small 
letters a through e.  The x-t 
axes belong to the Earth’s 
reference frame. 
 
 
 
 
 
 
 
 
a)  Which line is the world line of an object at rest relative to the Earth? 
b)  Which line is the world line of a spaceship traveling at speed +0.3c relative to the 

Earth? 
c)  Which line is a world line of a light pulse emitted by the spaceship as it passes the 

Earth? 
d)  Which events happen simultaneously in the Earth frame? 
e)  Which events happen simultaneously in the spaceship frame? 
f)  Which pairs of events are clearly separated by space-like intervals? Which are 

clearly separated by time-like intervals? 
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3) In your reference frame, two firecrackers explode 4 lt-ns apart at the same time. In 
your friend’s frame, the distance between the two events is determined to be 5 lt-ns. 
What is the time between those events in your friend’s frame? 

 
4) Jack lights and holds a match, and 60 seconds later, it goes out. Cheri, riding in a rocket 

past these events at constant speed, notes that, as measured in her frame, the match 
burned for 100 seconds. 
a)  How far apart in Cheri's frame did these two events (lighting and going out) 

occur? 
b)  As measured by Cheri, how far did the lit match travel, and how fast was it 

moving? 
c)  As measured by Jack, how fast and how far did Cheri travel during the one minute 

the match was lit? 
 

5) A train of rest length 40 lt-ns moves along the tracks at 0.8c and is struck by two 
lightning bolts. One bolt hits the front of the train and the other hits the back. 
According to track observers the bolts are simultaneous. 
a)  How far apart on the tracks did the lightning bolts strike? 
b)  According to riders on the train, how much time passed between the striking of 

the lightning bolts? Which occurred earlier? 
 
6) A cosmic ray particle moving down toward Earth at speed 0.99c decays 2.00 

microseconds after it was produced as measured in the rest frame of the particle. 
a)  In the cosmic ray's rest frame the Earth is moving toward it.  In this frame, how 

far, in light-µs, did the Earth travel during the particle's lifetime? 
b)  Observers in the Earth's frame see the particle coming down toward Earth.  How 

long did the particle live according to these observers and how far did it travel? 
 
7) A spaceship crew wants to make the trip from Earth to Alpha Centauri (4 lt-yr apart 

in the Earth/Alpha Centauri rest frame) in only 3 years as measured by clocks on 
board their spaceship which travels at constant velocity. Determine how fast the 
spaceship must travel relative to Earth. 

 
8) The spacetime diagram shows the worldlines of 

Earth and a rocket, as well as several labeled 
events.  
a)  How fast is the rocket moving, relative to the 

Earth? 
b)  Order events A, B, and C from earliest to 

latest in Earth’s reference frame. 
c)  Order events A, B, and C from earliest to 

latest in the Rocket’s reference frame. 
d)  Event B is the lighting of a signal beacon. 

Light leaves the beacon and travels toward 
the rocket. Also, light leaves the beacon and 
travels towards the earth. Draw and label the worldlines for each of these signals 
on the diagram. 
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9) The spacetime diagram shows the 

wordlines of the planet Earth, the planet 
Mongo (on a collision course with the 
Earth), and several labeled events. 
a)  Order events A, B, and C from 

earliest to latest in Mongo’s frame. 
b)  Event B is a Rocket passing by the 

Earth. In the Rocket Frame, events B 
and C are simultaneous. Draw and 
label the Rocket’s worldline. 

c) Determine the speed of the Rocket, as 
measured by Earth observers. 

10) A giant solar flare occurs on the Sun, which is located 8 lt-min from the Earth. 
Scientists on the Earth detect the light from the flare. At precisely the instant the 
scientists on Earth detect the solar flare light, a Klingon space ship passes by the Earth 
at speed 0.8c, heading straight for the Sun.  
a)  Construct a spacetime diagram for this situation. Label the following three events:  

A = Klingon ship hits Sun; B = flare occurs on Sun; C = Klingon ship passes Earth.  
b)  Order the events A, B, C, from earliest to latest, according to Earth-based 

observers.  
c)  Calculate the time intervals ∆t between each pair of events (AB, AC, and BC), 

according to Earth observers.  
d)  Calculate the intervals ∆t′BA  between events B and A, but now according to 

Klingon ship observers.  
e)  Classify each of the intervals as space-like, time-like or light-like.  

 
11) Farmer Brown, at rest in his (the primed) frame, carries what he measures to be a 5-

meter long ladder through the front door of his barn. According to observers at rest 
with respect to the barn, Farmer Brown and his ladder are moving at a speed 0.80c 
towards the barn (alternately, Farmer Brown sees the barn moving towards him at 
speed 0.80c.)  In the barn’s frame (the unprimed frame), the front door of the barn is 
at x = 0 and the back door is at x = 4.0 m.  The front door closes at t = 0, just as the back 
end of the ladder passes through. 
a)  In the barn frame, calculate the position of the front end of the ladder at the time 

the back end passes through the front door. 
b) Sketch a spacetime diagram from the rest frame of the barn.  Show the front of the 

barn at x = 0 and the back of the barn at x = 4.0, along with world lines for the front 
and back of the barn.  Also show worldlines for the front and back of the ladder. 

c) Explain why, in the barn frame, the 5-meter long ladder fits inside the 4-meter 
wide barn. 

d) Does Farmer Brown think the ladder fits inside the barn?  Answer by calculating 
the position of the back door of the barn, in Farmer Brown's frame. 
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12) The spacetime diagram shows the world lines of the Earth, a Star, and a Rocket, as 
well as several labeled events. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a)  On the diagram, label as “A” the event “Rocket passes Star.” 
b)  Determine the speed of the Rocket, as measured by Earth observers. 
c)  Determine the time between passing the Earth and Passing the Star, as measured 

by Rocket observers. 
d)  Determine the distance between the Earth and the Star, as measured by Rocket 

observers. 
e)  Draw the world line of a lost satellite passing the Earth at the same time as the 

Rocket, but going away from the Star at a speed that is ½ of the Rocket speed (as 
determined by Earth observers.)  Label this line “Satellite.” 

f)  Determine the speed of the satellite as measured by Rocket observers. 
g)  Order the events A, B, C, D, from earliest to latest, as observed in the Earth-Star 

frame. 
h)  Order the events A, B, C, D, from earliest to latest, as observed in the Rocket frame. 
i)  In some reference frame, the events C & D are simultaneous. In that frame, what 

is the distance between events C & D? 
j)  Explain why no one could ever measure the proper time between events C & D. 
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Relativity 3:  Relativistic Momentum 
and Energy  
 
Learning Goals 
 

1. Know the modifications in the definitions of momentum and energy needed 
to maintain invariance of the conservation laws. 

2. Given any two of a particle’s dynamical quantities (p, E, u, K, and m) 
determine any of the others. 

3. Show that 22 )(pcE −  is an invariant quantity, related to the particle’s mass 
and independent of velocity. 

4. Calculate a particle’s rest energy, and discuss its significance. 
5. Specialize any of the equations relating p, E, u, and K to zero-mass particles. 

 
So far in our discussions of relativity, we have taken a very powerful principle – the 

Principle of Relativity, which states that the laws of physics are the same for observers in 
any inertial reference frame – and have used this principle to change completely our 
notions of how time and space work. But we are not yet done looking at the implications 
of this principle. It will be necessary to generalize the classical relations for energy and 
momentum to account for the strange behavior that we have already seen at relativistic 
velocities. And the new, relativistic equations for energy and momentum carry significant 
implications that change our notions of energy and matter. As we will see, we will also 
find a new invariant in this discussion; namely, the combination 22 )(pcE − . 

 
A. A note on units 

 
When working with energy and momentum for small, subatomic particles (the ones 

that are most typically travelling at relativistic speeds), it is convenient to define a unit of 
energy called the “electron volt” (eV for short). One electron volt is the kinetic energy 
gained by an electron when accelerated through a 1 volt potential difference. 
Quantitatively, 1 eV = 1.6x10-19 J. An analogous energy unit might be a “superball-meter” 
– the amount of kinetic energy gained by a certain superball when dropped 1 m. 

 
For high energy particles, the energies can get into the thousands, millions or billions 

of electron volts, so we also define 1 keV = 103 eV, 1 MeV = 106 eV, 1 GeV = 109 eV, etc. 
 
Units for mass and momentum are also defined in terms of energy in relativity. For 

mass, we use eV/c2 – “electron volts per c2” – or keV/c2, MeV/c2, GeV/c2. For momentum, 
we use eV/c (or keV/c, MeV/c, GeV/c). For example, an electron has a mass of 511 
keV/c2; conceptually, this means that an electron has a rest energy of 511 keV, or that its 
mass – if converted completely into energy – would produce 511 keV of energy. 
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Warning:  when using these units, don’t throw any numbers in for the c – it is part of 
the unit. So, the mass of an electron should be left as “511 keV/c2” (or 0.511 MeV/c2), not 
as 511 keV/(3.0x108m/s)2 or 511 keV/(1 lt-s/s)2. 

 

B. New definitions for energy and momentum 
 
You have learned previously that in interactions among low velocity particles in 

which the only forces are the interparticle forces (i.e. no external forces), the total 
momentum i

i
ium ∑  and the total mass ∑

i
im  are conserved. (As in Chapter 2, we use the 

symbol u to refer to the velocity of some particle as viewed from a reference frame, 
reserving v for the velocity of the reference frame itself.)  For example, when particle 1 
collides with particle 2 and particles 3, 4, and 5 emerge from the point of collision, we have 
used two conservation laws: 

 
    54321 ppppp 

++=+     (3.1) 
and 

   





++=+

only! regime classical
in Valid:Caution

54321 mmmmm   (3.2) 

 
After Einstein discovered the velocity transformation laws Eq. (1.3) and (1.4), he 

recognized that the classical definition of momentum ( ump 
= ) was incompatible with 

Eq. (3.1) and the Relativity Principle. That is, for a given collision, classical momentum 
could be conserved in one frame but not another. An example will illustrate this: 

 
 
 

Example 1. Say goodbye to the classical expression for momentum.  (For 
this example, we use relativistic units of MeV for energy, MeV/c for 
momentum, MeV/c2 for mass, and velocities in terms of c as described 
previously). The figure below shows a particle of mass 9 MeV/c2 and speed 
0.8c striking a stationary particle of mass 5 MeV/c2, producing a single 
particle. 
 
 
 
 
 
 
 
The classical laws Eqs. (3.1) and (3.2) would yield 
 

  (3.2):  9 MeV/c2 + 5 MeV/c2 = m3 
       m3 = 14 MeV/c2 
 

9 5 m3 
u3 0.8 

Before After 
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  (3.1):  (9 MeV/c2)(0.8c) + (5 MeV/c2)(0) = m3u3 

       c
c
cu 514.0

MeV/14
MeV/2.7

23 ==  

 
Transform now to a frame in which the final particle is at rest. This clearly 
means that we should view the collision from a spaceship traveling with 
particle 3 at 0.514c to the right, relative to the original observer. 
 
Eq. (2.4) gives 

  0
)514.0(1

514.0514.0
/1

' 22
3

3
3 =

−
−

=
−

−
=

cc
cvu

vuu  

  cc
cvu

vuu 514.0
)514.0)(0(1

514.00
/1

' 2
5

5
5 −=

−
−

=
−

−
=  

  ccc
cvu

vuu 486.0
)514.0)(8.0(1

514.08.0
/1

' 2
9

9
9 =

−
−

=
−

−
=  

 
So, in the new primed frame, the collision looks like this: 
 
 
 
 
 
 
 
 
Checking the classical momentum conservation law in the new frame gives 
 

(9 MeV/c2)(0.486c) + (5 MeV/c2)(-0.514c) = m3(0) 
 
But the left side of this equation here works out to be 1.80 MeV/c which is 
NOT equal to the right side (which is 0). So, classical momentum is not 
conserved in this new frame. Therefore, either (a) conservation of 
momentum isn’t a valid law of physics; (b) the Relativity Principle 
(invariance of the laws of physics) is violated; or (c) we need a new 
definition for momentum. 

 
 
You probably won’t be surprised to hear that Einstein wasn’t about to give up on the 

Relativity Principle because of this argument. After all, he had already redefined time and 
space to make the Principle work. And although the expression um 

 for momentum does 
not lead to invariance for high velocity collisions, there are attributes of particles involving 
their masses and velocities that do produce invariant conservation laws. These quantities 
are called relativistic momentum and relativistic energy, or more simply, momentum and 
energy. They are defined by 

9 5 m3 

u'3=0 0.486c 

Before After 

0.514c 
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)4.3(

/1

)3.3(
/1

22

2

22









−
=









−
=

velocity and mass
of terms inenergy 

velocity and mass
of terms in momentum

cu
mcE

cu
ump




 

 
Think About This #3.1:   
If a particle is at rest, so that u = 0, what is its momentum and its energy according to 
Eqs (3.3) and (3.4)? 
 
Think About This #3.2:   
If a particle is moving faster and faster, so that u approaches c, what happens to its 
momentum and its energy according to Eqs (3.3) and (3.4)? For the calculus-track 
students, another way of asking this is to find p

cu


−→

lim  and E
cu −→

lim . 

 
 

Einstein was motivated to define momentum and energy in this way because 
conservation of energy and momentum and energy defined in this new way are invariant, 
as we will show with an example below. Of course, motivation is all very nice, but the 
most compelling reason that the momentum and energy of a particle must be defined this 
way instead of in the classical way is because experiments with high-speed particles 
conserve these new relativistic quantities and not those given by the classical definitions.  

 
Let’s explore this invariance by redoing Example 1 using Einstein’s new definitions 

and the conservation laws: 
 

    afterbefore pp 
=      (3.5) 

 
    afterbefore EE =     (3.6) 
 

 
 
 

Example 2. The figure below shows a particle of mass 9 MeV/c2 and speed 
0.8c striking a stationary particle of mass 5 MeV/c2, producing a single 
particle. 
 
 
 
 
 
 
 
You might not be too happy here with the final particle having a mass of 
16 MeV/c2, but hold on a little longer – we’ll explain this shortly. (A little 

9 5 16 

0.6c 0.8c 

Before After 
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preview – this might be a good time to take a pen and scribble Eq. (3.2) out 
of existence.)  In the next chapter, we’ll learn more rigorously how to 
determine the correct attributes of the final particle. Here we just want to 
check the conservation laws. 
 
The relativistic definitions and conservation laws Eqs. (3.3) – (3.6) yield 
 

 
2

2

2

2

)6(.1
)6(.)MeV/c16(0

)8(.1
)8)(.MeV/c9(

−
=+

−

cc
     (momentum) 

 

     
2

22

2

22

2

22

)6(.1
c)MeV/c16(

)0(1
c)MeV/c5(

)8(.1
c)MeV/c9(

−
=

−
+

−
            (energy) 

 
The momentum equation gives 12 MeV/c = 12 MeV/c, while the energy 
equation gives 15 MeV + 5 MeV = 20 MeV. So the conservation laws are 
satisfied in this frame. 
 
Now, transform to a frame in which the final particle is at rest, by viewing 
from a spaceship moving at 0.6c to the right. The velocity transformations 
give 
 

  0
)6.0(1
6.06.0

/1
' 22

16

16
16 =

−
−

=
−

−
=

cc
cvu
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 cccc
cvu

vuu 385.0
13
5

)6.0)(8.0(1
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9
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−
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In this new frame, the collision looks like this: 
 
 
 
 
 
 
 
 
When we check the relativistic conservation laws in this new frame, we 
find:  
 

    
2

2

2
5
3

2

2
13
5

2

01
)0)(/MeV16(

)(1
)5/3)(MeV/c5(

)(1
)13/c5)(MeV/c9(

−
=

−

−
+

−

cc  (momentum) 

9 5 16 

u'16=0  
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2

22

2
5
3

22

2
13
5

22

01
)/MeV16(

)(1
)/MeV5(

)(1
)/MeV9(

−
=

−
+

−

cccccc               (energy) 

 
The momentum equation gives 
 

  0/MeV
4

15/MeV
4

15
=− cc   

 
which checks out, while the energy equation gives 
 

  MeV16MeV
4

25MeV
4

39
=+  

 
which also checks out. This means the conservation laws are true in both 
the original and the new frame, and the Relativity Principle is upheld with 
Einstein’s new definitions. 

 
 
This may be a nice argument on paper, but does it work in practice? Are relativistic 

momentum and energy, rather than classical momentum and mass, really conserved in 
particle interactions? The answer is an emphatic YES! In millions of interactions observed 
in high-energy particle accelerators, relativistic momentum and energy have always been 
found to be conserved to within experimental uncertainty. 

 

C. Other useful relations between mass, velocity, momentum, and 
energy 

 
We now have relativistic expressions for energy and momentum given by Eqs (3.3) 

and (3.4), which are in terms of mass and velocity. These expressions can be combined 
(you’ll do this in a homework problem) to obtain: 

 

)7.3()()( 2222 





+=

mass and momentum
 of terms inenergy mcpcE  

 
which gives energy in terms of momentum and mass. As we’ll see in the next chapter, 

this is actually the most useful of all the energy and momentum relations. It applies to 
every particle in every situation. (We’ll see that Eqs. 3.3 and 3.4 aren’t very useful for 
“particles” of light.) It is also convenient in that it doesn’t have those square roots, which 
can be challenging to work with. 
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Similarly, beginning from Eqs (3.3) and (3.4), we obtain: 
 

)8.3(
2







=

energy and momentum
 of terms invelocity 

E
cpu



 

 
which gives velocity in terms of momentum and energy. As with Eq (3.7), you will 

show how to derive this formula in a homework problem. 
 
From equations (3.3), (3.4), (3.7), and (3.8), we can use any two of energy, 

momentum, speed, and mass to calculate the other two. 
 
 
 

D. Another invariant 
 
Eq. (3.7) can be rearranged to give 
 

2222

422422222422222

)/()/(

//)()(

cpcEm

ccpcEmcpEcmpcEmc

−=⇒

−=⇒−=⇒−=
 

 
This expression: 2222 )/()/( cpcEm −=  is an invariant quantity. We have 

encountered and worked with two other invariant quantities by this point: the speed of 
light c and the spacetime interval ∆S. Recall from chapter 2, we defined the square of the 
interval as 

 
    222 )()()( xtcS ∆−∆=∆         (2.1) 

 
As stated earlier, 2)( S∆  is an invariant – observers in different reference frames will 

agree on the value of this interval for any two events: 
 
    

                                                (2.2) 
 

 
where x∆  and t∆  are the distance and time between two events as measured in one 

reference frame, and x′∆  and t′∆  are the distance and time between the same two events 
as measured in another reference frame. 

 
Compare Eq. (2.1) with 

2222 )/()/( cpcEm −=         (3.8) 
  

Given any object or particle with energy E and momentum p as measured by an observer 
in a reference frame, this observer can easily calculate the value of m2 (or m) for that object. 

2222

22

)()()()(
)()(

xtcxtc
SS

′∆−′∆=∆−∆

′∆=∆
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If a different observer is in a primed reference frame and determines E’ and p’ for the same 
particle, she will find that if she calculates  

 
2222 )/()/()( cpcEm ′−′=′  

 
then she will get exactly the same value for m’ that the first observer found for m. In other 
words 

 
    

                                                (3.9) 
 

 
 
In the same manner that we used the invariant spacetime interval to relate ∆x and ∆t 

as measured in one reference frame to ∆x’ and ∆t’ in another reference frame, we can use 
the invariance of m to relate E and p in one frame to E’ and p’ in a different frame. 

 
What is this invariant m? This is simply the mass of the object. So, in words, the 

invariance expressed in Eq (3.9) states that all observers agree about the mass of an object.1 
 
We can re-write the expression given in Eq (3.9) in a slightly more convenient form: 
 
 
    

                                                (3.10) 
 

 
 

 
Think About This #3.3:   
What are 3 invariant quantities we have encountered so far? What is important about 
invariant quantities –or- why are invariant quantities so useful? 
 

 
E. Rest Energy and Kinetic Energy 

 
Let’s look more closely at what we called the relativistic energy of a particle in Eqs 

(3.4) or (3.7). If the particle is at rest, then u = 0 and p = 0. Then, the formulas for energy 
reduce to E = mc2, perhaps the most famous formula in all of physics. So we see that a 
particle has energy even when it’s not moving!  

 

1 You may hear people saying that in relativity, “a person’s mass increases as he approaches the speed of light.”  This is an 
unfortunate claim.  What they are doing is saying, “Well, since 22 /1/ cumup −= , we’re going to call 22 /1/ cum −  
the relativistic mass so that we can hold on to the p=mu definition of momentum.”  There is no compelling reason to do 
this – there is nothing in relativity that requires us to redefine mass as opposed to redefining momentum (which is what 
we have done here). 

222222

22

)/()/()/()/(

)()(

cpcEcpcE

mm
′−′=−

′=
 

2222

2222

)()()(

)()(

cpEpcE

cmmc
′−′=−
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This energy is called the rest energy, E0. That is: 
 

2
0 mcE =      (3.11) 

 
This was a remarkable result – the implications are two-fold: 
   
(a) first, the relation implies that matter and energy aren’t separate quantities, but are 
really just different forms of the same thing; and  
 
(b) second, implied in this relation is the possibility of converting between matter and 
energy. And the conversion factor is c2 – a huge number (when expressed in “everyday” units of 
m2/s2 or J/kg)! To get an idea of the magnitude of this factor, try computing the amount of 
energy contained in a 1 g paperclip. 

 
Think About This #3.4:   
What is the (rest) energy contained in a 1 g (0.001 kg) paperclip? Express your answer 
in Joules, which means using 3.0 x 108 m/s for c. For comparison, consider that you 
would have to lift this paperclip about 100 m (about 330 feet) to increase its 
gravitational potential energy by 1 J, or that this paperclip would need to travel at 
about 45 m/s (about 100 mph) to have a kinetic energy of 1 J. What are your thoughts 
about the energy contained in this paperclip? 
 
 
We have called the energy associated with a particle’s motion its kinetic energy. 

However in the relativistic regime, kinetic energy is not expressed as 2
2
1 mvK = . Instead, 

it is defined as the difference between a particle’s energy when it is moving and its rest 
energy, 

 

2
22

2
2

/1
mc

cu
mcmcEK −
−

=−=  .   (3.12) 

 
However, this doesn’t resemble the classical expression for kinetic energy, which as 

you recall was 2
2
1 mvK =  (or, since we use v for the velocity of the frame and u as the 

velocity of the particle, 2
2
1 muK = ). Since we know that the classical expression for kinetic 

energy is valid in the low speed regime, the relativistic kinetic energy given by Eq. (3.12) 
must somehow reduce to the classical expression when the speed of the particle is small 
compared to the speed of light. We show the connection between the relativistic and 
classical forms of kinetic energy in the next example. 

 
 
 

Example 3. Classical expression for kinetic energy. Use the binomial 
approximation in Eq (3.12) to find an approximate expression for K when 
u is much smaller than c. 
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Solution:  The binomial expansion states that ( ) ...11 2

12/1 +ε+≈ε− −  if ε 
is small. 

We write 
22 /1

1
cu−

 as ( ) 2/122 /1 −
− cu .  Then, Eq (3.12) becomes 

 

( )
( )
2

2
1

222
2
12

22/1222

/1

/1

mu

mccumc

mccumcK

≈

−++≈

−−=
−

    (3.12) 

 
Thus we see that the classical expression for kinetic energy is only a low-
velocity approximation to the correct expression, given by Eq. (3.11). 

 
 

F. Photons: Particles with Zero Mass 
 
How do we deal with the energy and momentum of light? In the same year that 

Einstein published his first paper on Special Relativity, he also proposed that light must 
be considered to be composed of particles which are now called photons. (This was the first 
of the three 1905 papers discussed at the beginning of Chapter 1.)  Since light always 
travels at a speed c in a vacuum, then photons in a vacuum must travel at that speed 
regardless of the reference frame of the observer. But if we look back at Eqs. (3.3) and (3.4), 
we find that the denominators of both equations are zero for a particle moving at the speed 
of light, which is clearly problematic, as we can’t divide by zero. 

 
The way to resolve this dilemma is to postulate that photons are particles with zero 

mass (m = 0). Eqs (3.3) and (3.4) are still not very useful in this case (a fraction which has 
zero in both the numerator and denominator is indeterminate). However, Eq (3.7) is 
useful; for m = 0, it becomes 
 

    E =|pc|  for massless particles only   (3.13) 
 

Note that while Eq (3.7) is valid for all particles, Eq. (3.13) is valid only for massless 
particles. 
 
G. More experimental evidence 

 
Now that we have introduced the relativistic relations for energy and momentum, we 

can discuss some additional pieces of evidence that Einstein’s theory of relativity is, in 
fact, correct. The following examples can be added to those presented in Chapter 1. 
Remember that if even one of these experiments had disagreed with Einstein’s theory, then 
the entire theory would have to be thrown out since everything is internally consistent. 
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• Particle accelerators:  As we already discussed in Chapter 1, subatomic particles 
are frequently accelerated in high energy experiments to speeds very close to c, but no one 
has ever managed to accelerate a particle with mass to a speed greater than c. There’s more 
here, though:  as the particle’s speed (relative to the laboratory) gets closer and closer to c, 
the amount of energy that has to be added to increase the speed further gets larger and 
larger, diverging as the speed approach c. So, for instance, the amount of energy that needs 
to be added to accelerate a particle from 0.98c to 0.99c has been found experimentally to 
be much larger than the energy to accelerate the same particle from 0.97c to 0.98c, and in 
fact, much larger than that predicted classically. As is the case with all other tests of 
relativity, the amount of energy to be added agrees perfectly with Einstein’s predictions, 
to within experimental uncertainty.  

 
• Collisions of high-energy particles. When subatomic particles are slammed into 

each other with high energies, new particles are actually created that weren’t there before 
the collision. These collisions are converting kinetic energy (KE) into matter, and this is 
done all the time in particle accelerators. (This is, in fact, the main tool that physicists use 
to study massive subatomic particles.)  This is an experimental result that simply cannot 
be explained classically. Once again, though, the results agree perfectly with Einstein’s 
theory. We will be discussing this in more detail in the next chapter, and some of you 
might know about particle accelerators, where much exciting new physics is discovered. 

 
• Matter-to-KE conversions. One of the most convincing and most dramatic tests of 

Einstein’s theory of relativity occurred on July 16, 1945, in New Mexico when the first 
atomic bomb was exploded, converting matter into a horrifying amount of kinetic energy 
(don’t forget that factor of c2 in the famous E = mc2 equation). Since then, there have been 
quite a few additional such demonstrations of Einstein’s theory. (And again, the 
quantitative aspects of these demonstrations agree perfectly with the theory.) 

 
It isn’t necessary to explode a bomb to convert matter into energy. Nuclear energy has 

found peaceful (if controversial) applications in the area of power generation. We will 
discuss nuclear power generation more in the next chapter (including fusion power – still 
being developed – which doesn’t produce any long-lasting radioactive waste). 
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The various formulas introduced in this chapter are summarized in the following table: 
 

Table 3.1  Formulas relating p, E, u, K, and m 
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We also summarize the various invariant quantities we have encountered so far 
in our study of special relativity: 

 
speed of light: c 

 
spacetime interval:                mass: 
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PROBLEMS 
 

1) A particle of mass 3m, moving at speed 0.60c in the  +x-direction, collides with and 
sticks to a particle of mass 2m originally at rest. The single composite particle also 
moves to the right after the collision. 
a) Calculate the initial total momentum before impact, using the classical definition, 

p = mu, for momentum. 
b) Assuming conservation of mass as well as classical momentum, find the velocity 

of the composite particle of mass 5m after the collision. 
c) Now transform to a primed frame in which the particle of mass 3m is at rest. Use 

the relativistic velocity transformation to compute the velocities u’3m, u’2m, and u’5m 
in the primed frame. 

d) Show that in the primed frame, the (classical) momentum mu’ is not conserved by 
computing the total momentum before the collision and the total momentum after 
the collision. 

 
2) An electron (melectron = 0.511 MeV/c2 = 511 KeV/c2) is accelerated from rest up to a 

velocity u = 0.99c. Note that this is straightforward to achieve even in an out-dated 
particle accelerator, so the calculations below give a clear way to test between classical 
mechanics and special relativity.  
a) Using the classical definition of kinetic energy, 2

2
1 mvK = , calculate the change in 

the electron’s kinetic energy in units of KeV. This change in kinetic energy has to 
be added to the electron in the form of work done by the accelerator. 

b) Using the relativistic definition of kinetic energy, calculate the change in the 
electron’s kinetic energy in units of KeV. This change in kinetic energy has to be 
added to the electron in the form of work done by the accelerator. 

 
3) Electron A has a total energy of 1.0 MeV. Electron B has a kinetic energy of 0.25 MeV. 

Electron C has a kinetic energy of 0.75 MeV. Electron D has a momentum of 1.0 MeV/c. 
For each of the electrons A through D, determine its energy, momentum, kinetic 
energy, and speed. 

 
4) A certain particle has a total energy of 1.20 MeV and a momentum of 0.95 MeV/c. 

Calculate the particle’s mass, kinetic energy, and velocity. 
 
5) Compute the momentum and velocity of a proton (mproton = 938 MeV/c2) that has a 

total energy equal to 7 times its rest energy.  
 
6) A proton (mass 938 MeV/c2) is traveling at velocity 0.60c relative to a spaceship which 

itself is traveling at velocity 0.80c relative to Earth. Calculate the velocity and then the 
energy and momentum of the proton as measured in the Earth frame. 

 
7) A particle’s energy and momentum in one frame are 41 MeV and 40 MeV/c 

respectively. Find the particle’s energy and momentum in a primed frame in which 
the particle’s speed is u’ = 0.8c. 
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8) Given a particle with E’ = 21 MeV and p’ = 15 MeV/c in the primed frame, and  
E = 20 MeV in the unprimed frame, determine the mass m and momentum p of the 
particle. 

 
9) A certain J-boson has mass of 150 MeV/c2, speed of 0.8c, and, and total energy of 250 

MeV. Determine the J-boson’s momentum and kinetic energy. 
 
10) A proton (mass 938 MeV/c2) has kinetic energy of 1.2 GeV. Determine this proton’s 

momentum and speed. 
 
11) Combine Eqs. (3.3) and (3.4) to derive Eq. (3.7). 
 
12) Combine Eqs. (3.3) and (3.4) to derive Eq. (3.8). 
 
13) Show, from Eqs. (3.7) and (3.8) that any massless particle moves at the speed of light 

and that if a particle moves at the speed of light it must have zero mass. 
 



Relativity 4:  Application of the 
Relativistic Conservation Laws  
 
Learning Goals 
 

1. Apply the relativistic conservation laws for momentum and energy to 
decays or "explosions", in which one particle decays into two (or more) 
particles moving along a straight line, including cases in which some or all 
the outgoing particles have zero rest mass. 

2. Apply the relativistic conservation laws for momentum and energy for 
simple collisions with all particles traveling along a line. 

3. Describe the processes of nuclear fusion and fission, and explain how these 
processes result in energy production. 

4. Given information about nuclear masses, calculate the amount of kinetic 
energy gained in a fusion or fission process. 

 
You should now understand why Einstein's first postulate, that the laws of physics 

are the same in different inertial reference frames, requires new definitions of momentum 
and energy. The classical momentum is not conserved, nor in general is the total mass of 
the particles in an interaction. In place of these, relativistic momentum and relativistic 
energy are conserved, and they are conserved in any inertial frame. Here we investigate 
several examples of particle interactions in which we apply these new conservation laws. 

 
A. Changes of Rest Energy 

 

Much of the light you see comes from changes in rest energy of atoms. Examples are 
sunlight, light from a candle flame, a lightning flash, light emitted by a fluorescent lamp, 
light from the phosphor coating on the screen of a television set or a video monitor, and 
laser light. In all these examples, the basic mechanism is that an atom in an "excited" state 
releases its energy in the form of a photon, with the atom going into its ground (lowest 
possible) state, or into an excited state of lower energy. We can represent the emission 
process by the simple reaction equation  

 
 A* → A + γ     (4.1) 

 
Here A* represents the excited atom, A the atom in its ground or lowest state, and γ (Greek 
gamma) the photon. This reaction is illustrated in Figure 4.1. 
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Figure 4.1. An excited atom emits a photon and recoils. 

 
In Figure 4.1, the excited atom is shown at rest, so all of its energy is rest energy and 

it has no momentum. But the photon has energy, and from the relation E = pc, it also has 
momentum. And because momentum must be conserved, the atom recoils. We can write 
the conservation of energy equation for the reaction in Eq. (4.1) as follows 

 
γ++=  of energy  A of energy kinetic A of energy rest A of energy rest *    (4.2) 

 
Because both the kinetic energy of A and the photon energy are positive numbers, 

the rest energy (i.e., the mass) of the excited-state atom must be greater than that of the 
ground-state atom. Therefore, in the emission process rest energy, i.e., mass, is 
converted to kinetic energy. 

 
When light is absorbed by an atom, exactly the opposite effect occurs. The atom 

begins in its ground state, absorbs the photon energy and goes into an excited state. Again, 
by conservation of energy, the excited atom must have more rest energy than the ground-
state atom 

 
Another everyday example of changing rest energy occurs in chemical reactions. For 

example, the reaction for the oxidation of a carbon atom 

 
    C + O2 →  CO2      (4.3) 

 
is known to release energy in the form of one or more photons. Therefore the sum of the 
masses of C and O2 must be greater than the mass of the carbon dioxide molecule. The 
change in rest energy in the case of chemical reactions is typically on the order of 1 eV (or 
1.6 x 10-19J). Much larger energies, on the order of 1 MeV, are involved in nuclear reactions. 
An example of a nuclear reaction is the decay of a neutron into a proton, an electron, and 
an electron antineutrino: 
 

    eepn ν++→ −       (4.4) 
 
Here the excess mass of the neutron over the mass of the proton plus electron (the electron 
antineutrino has very small mass) is converted to the kinetic energy of the three reaction 
products. 
 

A* 

Before 

A 
γ 

After 
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Another important example of changes in rest mass is the production of new particles 
in a high energy particle accelerators. In these accelerators, high-speed particles are shot 
at target particles and some of the kinetic energy of the incoming particles is converted to 
rest energy. In this way hundreds of new particles, most with lifetimes between 10-10 and 
10-23 s, have been produced.  
 
 
B. General Strategy for Applying the Relativistic Conservation 
Laws 

 
In a typical problem you are given information about the particles before an 

interaction and asked to compute certain properties of the outgoing particles after the 
interaction. You do this by writing down equations that express the fact that the sum of 
the incoming momenta is equal to the sum of the outgoing momenta and the sum of the 
incoming energies is equal to the sum of the outgoing energies. What quantities should 
be used in writing these equations?  Here is some time-saving advice. 

First rule:   

Always write the conservation of momentum and conservation of energy 
equations in terms of momentum and energy or mass variables, never in terms 
of velocity or kinetic energy. 
 

This rule keeps the algebra as simple as possible – it gets around having to solve 

simultaneous equations with the 22 /1 cv−  terms that can make the algebra messy. 
For example, if you are given the velocity of one or more particles in the problem 
statement, first calculate the momentum and energy of each particle from the given 
velocities. 

 

Second rule:   

When working with “eV” units (e.g., MeV for energy, MeV/c for momentum, 
MeV/c2 for mass), don’t ever put any numbers in for the speed of light c. Just 
leave it as “c”. The units will then automatically take care of themselves 
 

For example, if you have a motionless electron, its energy can be obtained from          
2222 )()( mcpcE += . Since the electron is motionless, its momentum 0=p , so its 

energy is just its rest energy 2mcE = = (0.511 MeV/c2) * c2 = 0.511 MeV. Hopefully 
this is familiar to you after your previous work, especially in Chapter 3. If needed, 
review Chapter 3, section A.  

 
We will work out an example similar to that in Eq (4.1) and Figure 4.1, but this time 

with numbers.  
  



R4.4                                                                     RELATIVITY 4:  CONSERVATION APPLICATIONS                                        
   

 
Example 1. Emission of a photon by a nucleus.  
An excited atomic nucleus, of mass 5.00 GeV/c2 and at rest, as in figure 
4.2, decays to its ground state by emitting a photon of energy 2.00 GeV. 
Calculate the recoil velocity and mass of the ground-state nucleus. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2  Emission of a photon by a nucleus 
 
Solution:  First draw a picture, and label each particle with its value of 
energy and momentum. Before the decay the excited nucleus has zero 
momentum because it is at rest. And from 2222 )()( mcpcE += , with 

0=p , we know its energy is the same as its rest energy, namely   5.00 
GeV. 
 

After the decay the ground-state nucleus recoils with unknown 
energy and momentum, E2 and p2. Also, the emitted photon has an 
energy of 2.00 GeV, as specified in the problem. And because the 
photon's mass is zero its momentum has the same numerical value as 
its energy. Notice that in the diagram there are two unknowns, the 
energy and momentum of the recoiling ground-state nucleus. We plan 
to solve for these two unknowns with two equations, the energy and 
momentum conservation equations. 

 
Looking at the diagram, we write down the energy conservation 

equation in terms of the symbols and numerical quantities shown in 
the diagram:   
 
    5.00 GeV = E2 + 2.00 GeV.   
 
Similarly, we write the momentum conservation equation in terms of 
symbols and numerical quantities shown in the diagram: 
 
    0 = p2 + 2.00 GeV/c    

From these conservation-law equations we easily solve for the 
energy and momentum of the recoiling nucleus to obtain E2 = 3.00 GeV 

p1  =  0 
E1 = 5.00 GeV 

Before 

γ 

After 

p2   = ? 
E2 = ? 

p3  = 2.00 GeV/c 
E3  = 2.00 GeV 
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and p2 = –2.00 GeV/c. Now that we've obtained expressions for the 
energy and momentum of the recoiling ground-state nucleus, we can 
find its velocity most directly using Eq. (3.8). 
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so the mass m2 = 2.24 GeV/c2. 
 
Notice that even though we were asked to find the velocity and 

mass of the recoiling nucleus, we didn't use these variables in our 
analysis until the very end, after we solved for its energy and 
momentum. 
 

 
 
 

The example just shown was for an emission of a photon from an initially stationary 
excited-state nucleus. This can be considered as a decay, or an explosion: a single 
particle before the interaction, and multiple particles after. We can also use the same 
general problem solving strategy and mathematical tools to consider the case of 
collisions between particles. 

 
C. Nuclear masses, fusion and fission 
 

A particularly important application of the relativistic conservation laws is nuclear 
power generation. There are two main approaches – fusion and fission. Nuclear fusion 
involves the merging (fusing) of two light nucleii (usually Hydrogen) to form a more 
massive nucleus (usually Helium), whereas fission involves the splitting of a very 
massive nucleus (e.g., Uranium) into two or more lighter nucleii. For the process to 
release kinetic energy, conservation of relativistic energy requires that the end 
product(s) have a smaller total mass than the initial nucleus or nucleii. 

 

Figure 4.3 shows a plot of the masses of the elements, divided by the total number of 
protons and neutrons (nucleons) in the nucleus of each atom.  
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Figure 4.3. Plot of average mass per nucleon (protons and neutrons) for the elements 
versus the number of nucleons A in the atom. The vertical axis has units amu which 
stand for atomic mass unit. 

 

This plot is useful when considering fusion and fission processes. The fusion of two 
2H nucleii to form a single 4He nucleus results in a lower overall mass; consequently, this 
process “releases” kinetic energy. Let’s examine this reaction in more detail. 

 
 

Example 2. Fusion reaction: HeHH 422  .  
 
Our strategy will be to calculate the mass of the reacting particles 
before the reaction and the mass of the produced particles after the 
reaction. This will tell us the (rest) energy before and the (rest) energy 
after.  
 If there is more rest energy before the reaction than after the reaction, 

we know by conservation of energy that some of the mass must 
have been converted to kinetic energy. This kinetic energy shows 
either in the particles resulting from the reaction moving or through 
the creation of photons (which in some sense are kinetic energy). 
This is net production of kinetic energy, which can be used for 
example to heat water in a turbine generator to produce electricity. 

 If there is more rest energy after the reaction than before, we know 
by conservation of energy that some (kinetic) energy must have 
been converted to mass. This requires an absorption of kinetic 
energy and is not useful for power generation. 

 

2H 

4
He 

56F

238U 
56Fe 
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In this reaction, two H2  nuclei (these are actually isotopes of 
hydrogen called deuterium) fuse together, resulting in the formation 
of He4  (an isotope of helium often called an alpha particle). The 2  in 
the H2  indicates that this isotope has 2 nucleons (a nucleon is a 
particle in the nucleus, either protons or neutrons), in this case 1 
proton and 1 neutron. We know it has 1 proton because Hydrogen has 
1 proton (that’s what makes it Hydrogen). The He4  has 4 nucleons, 
in this case 2 protons and 2 neutrons (Helium has 2 protons). 
 
As described above, we want to calculate the total mass before the 
reaction and compare it to the total mass after the reaction. We can do 
that by using Figure 4.3. 
 
From Figure 4.3, we see that H2  has an average mass per nucleon of 
about 1.0074 amu. Since H2  has 2 nucleons, we can calculate that it 
has mass (2 nucleons)(1.0074 amu/nucleon) = 2.0148 amu. We see that 

He4  has an average mass per nucleon of about 1.001 amu, so with 4 
nucleons , it has mass (4 nucleons)(1.001 amu/nucleon) = 4.004 amu. 
From the reaction  
 

HeHH 422 →+  
 

we see that there is 2.0148 amu + 2.0148 amu = 4.0296 amu before the 
reaction, and that there is 4.004 amu after the reaction. Since 4.0296 > 
4.004, there is more mass before the reaction than after. This means 
there is more rest energy before the reaction than after. Since energy 
is conserved, this means that some of the rest energy is converted 
into kinetic energy. So this reaction “releases” kinetic energy, and is 
useful for power generation. 
 
With this analysis, we might re-write the reaction as follows: 
 

Energy KineticHeHH 422 +→+  
 

Those of you familiar with chemical reactions might classify this as 
an exothermic reaction. 

 
 

 

On the other hand, elements with large nucleon number A have a larger 
mass/nucleon than those with intermediate values of A; consequently, kinetic energy 
can be released by splitting up one of these atoms (fission). 
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Of the two processes – fission and fusion – fission is a much easier process to achieve 
in the laboratory or in industrial processes. Large nucleii are naturally unstable, e.g., 235U 
can spontaneously decay via the process 235U  134Xe + 100Sr + 1n. Practically, then, the 
issue boils down to setting things up such that the process can be accelerated when 
desired, and can be inhibited when unwanted. From that perspective, the concept of a 
chain reaction is relevant. The ideas of nuclear fission and chain reactions – which were 
pioneered by Lise Meitner, Otto Hahn, Fritz Strassmann and Enrico Fermi in the 1930s – 
is straightforward:  if the neutrons that are released in a fission process bombard another 
nearby (unstable) nucleus, they can trigger the fission of that nucleus as well. Practically, 
all that is needed is a large enough density of the unstable 235U and a chain reaction will 
start. This idea was pursued by the Manhattan Project in the 1940s to develop an atomic 
bomb, the detonation of which was achieved by explosively compressing a Uranium 
sample to increase its mass above the critical value for a chain reaction. The technique 
has since been refined with the use of controllable graphite rods (which absorb 
neutrons) to allow the reaction to proceed in a controlled manner in power generators. 

 
Nuclear fission has a few serious drawbacks:  (a) the fuel is expensive (Uranium) and 

limited in supply. If society were to switch entirely to fission-based power generation, it 
is estimated that the supply of Uranium would last for only 50-100 years. (b)  The by-
products of the fission reaction are nucleii which themselves are unstable and 
radioactive; consequently, the material poses significant environmental and health 
hazards unless properly stored. (It is possible to extract additional energy from this 
nuclear “waste”, though the environmental and health hazards remain.)   

 
Another drawback of nuclear fission is the concern that reactors could malfunction, 

such as through a “melt-down” and release massive amounts of radiation (this actually 
happened to the Chernobyl reactor in the Ukraine in 1986). Other similar operational 
issues exist. While there had been some confidence that modern engineering designs 
and safety protocols had reduced the dangers associated with reactor malfunctions, the 
2011 Fukushima Daiichi nuclear disaster in Japan is a recent demonstration of the 
dangers when something goes wrong with this technology. In contrast, nuclear reactors 
in (non-Soviet) Europe have operated for many decades without significant incident; 
however in response to Fukushima, there have been severe shifts in European Union 
nuclear policy. Nuclear power from fission reactions remains a complex and contentious 
issue, scientifically, technologically, and politically. 

 
Nuclear fusion, by contrast, runs off water (actually, 2H which can be found in 

water) and produces Helium as a by-product, so waste disposal is less of a problem.1  
The energy production is also much more efficient for this process than for fission, as 
can be inferred from the steepness of the curve in Fig. 4.3. Estimates are that there is 
enough 2H (Deuterium) in ocean water to power the world’s needs for many thousands 
of years (if not millions). In fact, nuclear fusion is the power source in stars, including 
our own Sun. It can be argued that almost all of the Earth’s energy sources can be traced 
back to nuclear fusion. 

1 Some radioactive tritium is released in the process as well, but it is short-lived with a half-life of only 12 minutes; 
consequently there is no long-term waste problem with the tritium. 
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Nuclear fusion is not without its problems, though. Specifically, it is very difficult to 

achieve in a controlled manner. Making a fusion bomb (unfortunately) isn’t that difficult 
(relatively speaking), as a fission explosion can be (and has been) used to compress 
hydrogen together and cause explosive fusion. But to achieve a controlled fusion 
reaction is a very difficult procedure that will require a significant amount of ingenuity 
over the next few decades. This is a very important problem – an argument could be 
made that the future of our modern energy-intensive civilization will depend on 
developing techniques to achieve cost-efficient fusion power generation. As with 
anything involving energy and energy policy, it is reasonable to expect that there is no 
single technological solution to our ongoing energy crisis. In fact, any suite of 
technological solutions will likely also be insufficient – the energy challenges facing us 
and those who follow us are too complex to be solved by science alone. 
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PROBLEMS 
 
1) A nucleus with mass 2.24 GeV/c2 in its ground state and initially at rest absorbs an 

incoming photon of unknown energy E1. After absorbing the photon, the nucleus is 
raised to an excited state, with mass 5.00 GeV/c2, and recoils with unknown 
momentum p3. 

 a)  Determine the energy, momentum, and speed of the incoming photon. 
 b) Determine the energy, momentum, and speed of the excited nucleus after it absorbs 

the incoming photon. 
 c) Note that this absorption of a photon by a nucleus is the exact opposite of the 

emission of the photon by a nucleus done as Example 1 in this chapter (the ground 
state nucleus has mass 2.24 GeV/c2 and the excited nucleus has mass 5.00 GeV/c2 in 
both cases.) Compare the speed for the recoiling nucleus in Example 1 with the speed 
of the nucleus you just calculated. Are the recoil speeds the same for emission and 
absorption? 

 
2) A particle of mass m1 = 9 GeV/c2 and energy E1 = 15 GeV approaches a stationary 

particle of mass m2 = 5 GeV/c2. The particles collide and form a single particle of mass 
m3. Determine E3, p3, and m3. 

 
3) An incident proton, mass m = 938.27 MeV/c2, strikes a target proton at rest with just 

enough energy to create an electron-positron pair. (The two protons are still present 
after the collision.)  A positron is the antiparticle of an electron; both the electron and 
positron have masses 0.511 MeV/c2. Calculate the minimum energy needed by the 
incident proton in the frame where the target proton is initially at rest. (Hint:  After 
the collision, both protons and the electron-positron pair all move together with the 
same velocity.)   

 
4) A particle of mass 3.0 MeV/c2 and momentum 1.0 MeV/c hits and sticks to a particle 

of mass 2.0 MeV/c2, initially at rest. 
a) Find the mass of the composite particle and its velocity. 
b) How much kinetic energy is converted to mass? 

 
5) A photon of momentum 2.0 MeV/c traveling along the positive x-axis strikes a 

stationary particle of mass 4.0 MeV/c2. After the collision, there are simply two 
photons: photon γ1 travels backward, along the negative x-axis and photon γ2 travels 
forward, along the positive x-axis. Find the energies of γ1 and γ2 after the collision. 

 
6) A particle of mass 1.00 MeV/c2 is moving to the left when it absorbs a photon of 

momentum 7.5 MeV/c moving to the right. The absorption stops the particle and 
excites it to a new total energy Ef. Determine Ef and mf. 

 
7) Particle A of mass 7.5 GeV/c2 and energy 12.5 GeV moving to the right collides with 

stationary particle B of mass 6.0 GeV/c2. The result is a stationary particle C of 
unknown mass mC and a photon γ of unknown energy Eγ. How do you know the 
photon is moving to the right? Determine mC and Eγ. 
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8) A 3.0 GeV photon hits a stationary particle A (mass mA). After the collision there are 
simply two particles. Particle B has mass 1.0 GeV/c2 and unknown momentum pB. 
Particle C has mass 3.0 GeV/c2 and momentum 4.0 GeV/c and moves in the same 
direction as the original photon. Determine mA and pB. 

 
9) A particle of mass 6.0 GeV/c2 and momentum 8 GeV/c is moving to the right and 

collides with a stationary particle, also of mass 6.0 GeV/c2. The two particles annihilate 
each other, resulting in two photons: one moving the right and one moving to the left. 
Determine the energy of the left-moving photon and the energy of the right-moving 
photon. 

 
10) Particle A of unknown mass mA moves to the right with speed 0.6c. At some instant, 

it decays into two particles: stationary particle B of unknown mass mB and a 3 MeV 
photon moving to the right. Determine mA and mB. 

 
11) In a nuclear reaction, two deuterium nuclei each of mass 1875.61 MeV/c2 combine to 

form a single helium nucleus of mass 3727.38 MeV/c2. Is rest energy converted to 
kinetic energy or vice-versa?  Support your answer with a calculation. Would you 
classify this as a fusion reaction or a fission reaction? 

 
12) In a nuclear reaction, a slow neutron causes a uranium nucleus (mass = 218,943.42 

MeV/c2) to split into a Barium nucleus (mass = 131,261.73 MeV/c2) and a Krypton 
nucleus (mass = 85,629.32 MeV/c2), plus two excess neutrons (actually 3 including the 
original neutron, but that is present before the process as well), each of mass 939.57 
MeV/c2. Calculate the energy converted from mass to kinetic energy in this process. 
Would you classify this as a fusion reaction or a fission reaction? 

 
13) Based on the plot in Figure 4.3, explain why a fusion reaction is a more efficient power 

source (“pound for pound” or by mass) than a fission reaction. 
 
14) Nitrogen (A = 14) comprises more than 75% of the atmosphere and is readily available. 

Would Nitrogen make a good fuel source for a fission reactor to generate energy? Use 
Figure 4.3 to explain why this suggested fission process will or will not work to 
produce energy. 

 
15) After a supermassive star has run out of Hydrogen to fuse, it starts fusing Helium into 

heavier elements, then fusing those into heavier elements, etc., until it gets to iron (Fe). 
Up until this point, the fusion reactions produce kinetic energy in the form of rapidly 
moving atoms and molecules and photons. The star is effectively exploding, but its 
massive gravitational field keeps the explosion contained, and this balance results in 
a stable star. But after the star has fused its materials into iron, it stops producing 
kinetic energy and the gravitational interaction causes it to contract very suddenly; 
the massive decrease in gravitational energy results in an uncontained explosion. This 
is one way in which a star can go supernova.  Use Figure 4.3 to explain what is so 
special about iron. Why can’t the star produce additional kinetic energy via fusion of 
iron with itself or lighter elements? 
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