\qquad

The following information pertains to questions 1 through 3 . At some time $t=0$, an electron ($q_{e}=-1.6 \times 10^{-19} \mathrm{C}$) has a velocity of $\vec{v}=4.0 \frac{\mathrm{~m}}{\mathrm{~s}} \hat{\imath}-3.0 \frac{\mathrm{~m}}{\mathrm{~s}} \hat{\jmath}$. It moves in a region of space with a uniform magnetic field in the $+z$ direction, $\vec{B}=+1.5 \mathrm{~T} \hat{k}$.

1. [2 points] Why will be the shape of its subsequent trajectory be a circle (and not a parabola, straight line or helix)?
2. [4 points] At $t=0$, what is the magnetic force on the electron? Express your answer as a vector with appropriate units.
3. [2 points] As the electron moves through the magnetic field in the absence of other forces, why will its speed remain unchanged?
4. [4 points] In the figure to the right, Wire 1 carries current I into the page and Wire 2 carries current I out of the page. At each of the two dots shown, draw and label three vectors that represent the magnetic field \vec{B}_{1} at the dot due to the current in Wire 1 , the magnetic field \vec{B}_{2}

Wire 1
(-)
Wire 2 due to the current in Wire 2, and the total magnetic field $\vec{B}_{\text {total }}$. Pay close attention to directions and relative magnitudes.
5. [4 points] At the center of a tight, circular coil of wire, the magnetic field has a magnitude of 3.0 mT . The coil has a mean radius of 3.0 cm , and it is supplied by a power supply with a current of 2.8 A . About how many turns of wire make up this coil? (Note that this is not a solenoid! This is very similar to Problem 7 of the Week 18 homework. Note further that the field at the center of a circular loop of current has magnitude $B=\frac{\mu_{0} I}{2 R}$, which can be derived via the Biot-Savart law.)
6. [4 points] In the figure below, a current $I=4.0 \mathrm{~A}$ runs on a straight wire from infinitely far away on the left, along the quarter-circle of radius $R=5.0 \mathrm{~cm}$, then runs "up" along an infinitely long straight wire. What is the magnetic field at the center of the quarter-circle? Be sure to give both the direction and appropriate units.

