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Math	Lab	6:	Powerful	Fun	with	Power	Series	Representations	of	Functions	
Due	noon	Thu.	Jan.	11	in	class	 *note	new	due	time,	location	for	winter	quarter 	
	
Goals:		
1. Practice	taking	derivatives.	
2. Investigate	how	to	approximate	arbitrary	functions	using	power	series	representations.	
3. Determine	Taylor	series	representations	of	common	functions.	
	
Instructions:	Same	as	previous	labs;	see	Handout	folder	in	program	file	share.	
	
INTRODUCTION	
In	this	lab,	you	will	learn	how	to	approximate	an	arbitrary	function	with	a	power	series	 polynomial 	representation	 and	
start	to	learn	what	a	power	series	is .	We	will	return	to	this	in	spring	quarter	where	we	will	build	a	more	solid	theoretical	
foundation,	but	it’s	very	useful	in	the	physical	sciences	to	be	able	to	replace	more	complicated	functions	with	simpler	
power	series	representations.	An	example	would	be	trying	to	integrate	a	function	that	does	not	have	an	elementary	anti‐
derivative:	replace	the	function	with	its	power	series	representation,	which	can	be	integrated	 you	can	always	find	the	
anti‐derivative	of	a	power	function 	and	you	have	an	approximate	integral	for	your	original	function.	You’ve	also	
encountered	versions	of	this	in	physics;	for	example,	approximating	sin 	for	“small”	 	is	a	power	series	
representation,	since	 	is	a	power	function.	Another	place	this	showed	up	in	the	background	was	using	Euler’s	
method	to	numerically	solve	the	differential	equation	for	a	spring‐mass	system	or	the	simple	pendulum.	
	
PART	1:	LINEAR	APPROXIMATIONS	TO	FUNCTIONS	
1.	Use	Desmos	to	plot	 1 / .	In	the	next	input	box,	enter	 0,	1 	to	plot	that	point.	Zoom	in	on	the	point	until	the	
curve	looks	linear.		

2.	In	the	space	below,	show	that	the	equation	to	the	tangent	line	to	 1 / 	at	the	point	 0,	1 	is	 1.	

	
	
	
	
	
	
	
	

3.	On	the	same	graph	 still	in	default	zoom ,	plot	 1.	What	do	you	notice	about	the	curve	and	the	tangent	line	

to	the	curve?	Hopefully	this	reminds	you	that	the	tangent	line	to	a	curve	at	a	point	is	the	local	linearization	of	the	curve.	
4.	Note	the	range	and	domain	of	the	plot	window	for	which	the	tangent	line	is	an	excellent	approximation	to	the	function.	
Try	to	have	the	point	 0,	1 	as	centered	on	your	screen	as	you	can.	
	

____________ 0 ____________				 ____________ 1 ____________	
	
5.	Now,	zoom	out	until	you	can	see	clear	deviations	between	the	tangent	line	and	the	function.	Again,	try	to	have	the	point	
0,	1 	as	centered	on	your	screen	as	you	can.	Note	the	range	and	domain	of	the	plot	window.	
	

____________ 0 ____________				 ____________ 1 ____________	
	
	 	



 
PART	2:	QUADRATIC	APPROXIMATIONS	TO	FUNCTIONS	

6.	Let’s	examine	the	equation	 1	further.	We	can	re‐write	this	as	 1 ⋅ ⋅ .	In	the	space	below,	

show	that	you	understand	this	move.	
	
	
	

7.	The	expression	 1 ⋅ ⋅ 	is	made	up	of	power	functions	with	a	term	of	degree	0	 the	 	term 	and	term	of	

degree	1	 the	 	term .	To	anticipate	something	we’ll	need	later,	we	can	generalize	this	to	 ,	
where	 	and	 	are	constants.		

In	this	case	 1 	,	what	is	 ?	What	is	 ?		 	 _______________	 	 _______________		

8.	Let’s	add	another	power	function	to	the	two	we	already	have,	so	we	can	go	from	a	linear	function	to	a	quadratic	

function.	In	Desmos,	type	in	h x 	 	1	 	1/2	*	x	 	c_2*x^2	which	should	display	as	 1 .	Add	in	a	slider	

for	 .	Set	the	range	for	the	slider	to	be	between	 1	and	1.		
9.	Set	 0	initially.	For	this	case,	the	line	for	 	and	the	graph	for	 	should	be	identical.	Adjust	 	until	the	graph	of	

	is	a	better	match	to	the	graph	of	 	than	the	line	 	is.		What	is	your	best	value	for	 ?										
		 _______________				

	

11.	Was	your	answer	for	 	close	to	 0.125?	If	not,	try	again	or	check	in	with	a	neighbor	or	instructor.		

12.	We	can	conclude	that	the	quadratic	function	 1 	is	a	better	approximation	to	 1 / 	than	

the	linear	function	 1 ,	at	least	near	the	point	 0,	1 .	We	won’t	do	it	for	this	part,	but	we	could	add	a	cubic	term	

with	some	constant,	a	degree	4	terms	with	another	constant,	etc.	and	it	might	not	surprise	us	if	we	got	better	and	better	
fits	to	the	original	function.	
13.	Let’s	see	how	good	our	power	function	approximations	are.	Let’s	consider	 0.2.	BY	HAND	 please	don’t	use	your	
calculator ,	calculate	 0.2 :	

0.2 1
1
2
0.2 	

	
	
14.	Again	BY	HAND	 please	don’t	use	your	calculator ,	calculate	 0.2 ;	you	should	get	1.095:	

0.2 1
1
2
0.2

1
8
0.2 	

	
	
15.	Now,	please	DO	USE	your	calculator	to	calculate	 0.2 :	

0.2 1 / 1.2 / 	
	
	
	
16.		Compare	your	answers.	Is	the	cubic	polynomial	 	a	better	approximation	to	the	function	 	than	the	quadratic	
polynomial	 	at	 0.2?	What	about	on	its	own	terms:	is	 0.2 	close	to	 0.2 ?	
	
	
	
17.	Go	back	to	Desmos,	and	return	to	the	default	zoom	 use	the										button .	Do	you	think	 2 	or	 2 	would	give	good	
approximations	to	 2 ?		
		
	
	
	



 

18.	BY	HAND,	calculate	 0.02 	
	
	
	
	
	
	
	
	
	

BY	HAND,	calculate	 0.02 Use	a	calculator	to	determine	 0.02

	
19.		Compare	your	answers.	Is	the	cubic	polynomial	 	a	much	better	approximation	to	the	function	 	than	the	
quadratic	polynomial	 	at	 0.02?	
	
	
	
20.	Now,	also	consider	the	ease	of	calculating	 0.02 	compared	to	calculating	 0.02 .	Which	was	easier	to	calculate?	
What	would	you	say	to	the	claim	“ 1 / 1 		for	‘small	enough’	 ”?		
	
	
	
	
	
	
	
	
	
PART	3:	CUBIC	POLYNOMIAL	APPROXIMATION	TO	THE	EXPONENTIAL	FUNCTION	NEAR	 	
21.	We	will	proceed	similarly	to	before,	but	this	time	for	 	near		 0.	As	before,	we’ll	start	with	the	linear	
approximation	by	finding	the	equation	of	the	tangent	line	at	 0.	In	the	space	below,	show	that	the	equation	to	the	
tangent	line	to	 	at	the	point	 0,	1 	is		 1 .	
	
	
	
	
	
	
	

22.	In	a	new	browser	tab	or	window,	open	https://www.desmos.com/calculator/ipwbcpyvh5.	To	increase	ease	
in	viewing,	turn	on	Projector	Mode	under	graph	settings	 use	the	wrench							 .	This	Desmos	calculator	plots	 	and	
the	point	 0,	1 .	You	will	also	see	expressions	for	 , ,	and	 .	Initially,	the	constants	 , , ,	and	 	are	all	set	to	
zero.	Consider	the	expression	for	 	you	confirmed	in	step	21.	
In	the	Desmos	calculator,	 .	What	are	the	numerical	values	for	 	and	 ?				 ________							 ________	
	
23.	In	the	Desmos	calculator,	set	 1	and	 1.	The	graph	for	 	should	appear.		
	
24.	Turn	on	the	graph	for	 	by	clicking	on	the	circle	in	input	box	4,	next	to	the	expression	for	 .	Since	 	is	currently	
set	to	0,	 	so	the	two	graphs	should	be	identical.	So,	what	is	 ?	As	you	did	before,	you	could	just	guess	at	
different	values	for	 	using	the	slider	until	it	looks	“good	enough”.	It	turns	out	that	if	there	exists	a	power	series	
representation	for	a	function	over	some	interval,	then	there	is	a	formula	to	calculate	the	various	 	constants	for	each	 	
term.		
	

	

 
 
 
 
 



 
25.	For	a	function	 	that	can	be	represented	by	a	power	series	over	some	interval,	then	in	a	region	near	 :	
	

⋯ ⋯		
	

Since	 1	and	 ,	then:	
	

⋯ ⋯																			
	

Including	more	and	more	terms	in	the	power	series	results	in	a	better	approximation	over	a	larger	range	interval.		
	

The	 	coefficients	are	given	by:	
	

1
										

1
										

1 ⋅ 2
										

1 ⋅ 2 ⋅ 3
										

1 ⋅ 2 ⋅ 3 ⋅ 4
									…											

!
	

	
where	 	is	the	 th	derivative	of	 	evaluated	at	 	and	 !	 pronounced	“n	factorial” 	is	defined	such	that	
	0! 1, 1! 1, 2! 1 ⋅ 2, 3! 1 ⋅ 2 ⋅ 3, 4! 1 ⋅ 2 ⋅ 3 ⋅ 4, … , ! 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ … ⋅ 1 ⋅ 	
	

We’ll	see	where	the	formula	for	the	coefficients	comes	from	in	Chapter	8	at	the	beginning	of	spring	quarter,	but	if	you	can’t	
wait	until	then,	you	can	glance	over	section	8.7.	We	won’t	worry	about	how	to	derive	this	formula	now,	but	we’ll	practice	
using	it	and	see	that	it	works.	These	types	of	series	are	called	Taylor	Series,	and	for	the	special	case	where	 0,	these	are	
called	MacLaurin	Series.	
	

26.	Fill	out	the	following	table;	the	first	few	rows	and	some	other	entries	are	done	for	you	to	follow	as	an	example.	Recall	
that	in	our	case,	 ,	expanded	around	 0.	
	

	 	 0 !

!
0	 	 0 1 0! 1 0

0!
1
1

1

1	 ′ 	 ′ 0 1 1! 1 ′ 0
1!

1
1

1

2	
	

									 0 									 2! ′′ 0
2!

	

3	
	

′ 									 ′ 0 									 3! ′′′ 0
3!

	

	

27.	Note	that	 1	and	 1,	which	is	the	same	thing	found	in	step	22,	where	they	were	obtained	from	the	equation	for	
the	tangent	line	to	 	at	 0.	You	should	have	found	that	 1/2	and	 1/6.	Did	you?	If	not,	try	again	or	
check	in	with	a	neighbor	or	instructor.	In	fact,	you	may	be	able	to	guess	that	the	general	formula	for	 1/ !.	
	

28.	Go	back	to	the	Desmos	calculator,	and	set	 1/2.	What	do	you	notice	about	the	match	between	the	quadratic	
polynomial	 	and	the	function	 	near	 0,	especially	compared	with	the	linear	 ?	
	

29.	Now,	turn	on	the	graph	for	 	by	clicking	on	the	circle	in	input	box	5,	next	to	the	expression	for	 .	Since	 	is	
currently	set	to	0,	 	so	the	two	graphs	should	be	identical.	Set	 1/6.	What	do	you	notice	about	the	match	
between	the	cubic	polynomial	 	and	the	function	 	near	 0,	especially	compared	with	the	linear	 	and	the	
quadratic	 ?	
	

30.	Turn	off	 , ,	and	 	by	clicking	on	the	circles	next	to	the	input	boxes.	Go	back	to	the	default	zoom	 use	the										
button .	One	at	a	time,	turn	on	 , ,	and	 	by	clicking	on	the	circles.		
	

31.	Briefly	summarize	what	you	learned	in	this	part.	
	
	
	

 
 
 
 
 



 
PART	4:	POWER	SERIES	FOR	SIN	NEAR	 	

32.	In	a	new	browser	tab	or	window,	open	https://www.desmos.com/calculator/epwg13gztm.	To	increase	ease	
in	viewing,	turn	on	Projector	Mode	under	graph	settings	 use	the	wrench							 .	This	calculator	graphs		 sin .	There	
is	also	a	 	which	is	currently	turned	off,	with	all	the	coefficients	set	to	zero.	
	
33.	Fill	out	the	following	table	to	find	the	first	terms	of	the	power	series	representation	for		 sin ,	expanded	around	

0.	
	

	 	 0 !

!
0	 sin 	 0 sin 0 0 0! 0

0!
0
1

0

1	 ′ 	 ′ 0 	 1! ′ 0
1!

	

2	
	

									 0 									 2! ′′ 0
2!

	

3	
	

′ 									 ′ 0 								 3! ′′′ 0
3!

	

4	
	

									 0 							 4! 0
4!

	

5	
	

									 0 							 5! 0
5!

	

	

34.	Did	you	find	 0	and	 1,	 1/6,	and	 1/120?	If	not,	try	again	or	check	in	with	a	neighbor	or	
instructor.	
	

35.	Turn	on	 	by	clicking	on	the	circle	next	to	input	box	2.	One	at	a	time	in	order,	set	 , , , , ,	and	 	to	the	
calculated	values.	As	you	set	 1,	note	that	this	is		saying	that	sin 	for	small	 .	What	do	you	notice	about	the	
polynomial	approximation	 	to	the	function	 sin 	as	you	add	more	terms?		
	
		
	
	
	
	

PART	5:	APPROXIMATING	 	for	small	 	

36.	Previously,	we	found	that	 1 / 1 	for	“small	enough”	 .	We	also	found	that	 1 / 1 	was	

better	for	not	quite	as	small	 .	But	for	small	enough	 ,	we	are	able	to	neglect	 	and	higher	order	 	terms	 e.g.	 , ,	etc. 	
because	if	 	is	close	to	0,	then	 	is	even	smaller.	Another	way	to	think	of	this,	as	we’ve	seen,	is	that	this	is	a	valid	
approximation	when	the	tangent	line	is	a	good	approximation	to	the	function	itself.	We	can	determine	the	approximation	
either	by	finding	the	tangent	line	or	by	finding	the	first	few	 	coefficients	as	we	did	in	the	last	two	parts.	Let’s	try	a	few	
and	see	if	we	can	find	a	pattern.	
	

37.	Try	 1 .	Either	by	finding	the	tangent	line	to	 1 	at	 0	or	by	finding	 	and	 ,	show	that	 1 1 2 	
for	small	 .	
	
	
	
	
	
	

 
 
 
 
 

 
 
 
 
 



 
		
38.	Another	way	to	show	this	is	by	expanding	the	binomial	 1 .	Show	that	expanding	 1 1 2 ,	so	that	
for	small	 ,	we	again	get	that	 1 1 2 .	
	
	
	
	
	
	
	
	
	
39.	Try	for	 1 / ,	either	by	finding	the	tangent	line	at	 0	or	by	finding	 	and	 .	
	
	
	
	
	
	
	
	
40.	Try	for	 1 / .	
	
	
	
	
	
	
	
	
	
41.	Summarizing	these	in	the	table,	we	find	that	 for	small	 :	
	
Make	a	conjecture	for	 1 ,	where	 	is	any	number.	
	
	
	
	
	
42.	Prove	your	conjecture:	
	
	
	
	
	
	
	
	
	
	
	

1/2 1 / 1
1
2

2 1 1 2 	

1/3 1 / 1
1
3

1/2 1 / 1
1
2

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 


