Matter and Motion Winter 2016 Chemistry Workshop 1

The workshop is intended to be a low-pressure setting where we get to practice problems, ask any questions, and discuss concepts and problem solving methods. Have fun! Work together on whiteboards or scratch paper and then <u>neatly write your solutions in a notebook</u> where you keep chemistry class notes. Your workshop solutions will be included in your portfolio.

- **1.** a) Write the differential rate equation for a 2nd order reaction involving a single reactant A.
 - b) Use calculus to derive the integrated rate equation for this 2nd order reaction.
 - c) Derive an expression for the half-life of this 2nd order reaction.
- **2.** Make a graph of a general reactant concentration [A] versus time for zero-, first-, and second-order reactions. Compare the half-lives of the different reactions.
- **3.** Consider the reaction $2I^{-}(aq) + S_2O_8^{2-}(aq) \rightarrow I_2(aq) + SO_4^{-}(aq)$ at 25°C, with the following experimental results for the initial rates. a) Determine the differential rate law. b) Calculate the value of the rate constant. Is it the same for each experiment?

[I ⁻] ₀ (mol/L)	$[S_2O_8]_0$ (mol/L)	Initial rate (mol/L·s)
0.080	0.040	12.5 x 10 ⁻⁶
0.040	0.040	6.25 x 10 ⁻⁶
0.080	0.020	6.25 x 10 ⁻⁶
0.032	0.040	5.00 x 10 ⁻⁶
0.060	0.030	7.00 x 10 ⁻⁶

4. Consider the reaction NO_2 (g) + CO (g) $\rightarrow NO$ (g) + CO_2 (g), where the rate only depends on the concentration of nitrogen dioxide for temperatures under 225°C. Under these conditions, the following data were collected. a) Determine the rate law and the integrated rate law. b) Determine the value of the rate constant c) Calculate [NO_2] at 2.70×10^4 s after the start of the reaction.

[NO ₂] (mol/L)
0.500
0.444
0.381
0.340
0.250
0.174

- **5.** A first-order reaction is 75.0% complete in 320 s. a) What are the first and second half-lives for this reaction? b) How long does it take for 90% completion?
- **6.** A proposed mechanism for the breakdown of hydrogen peroxide is as follows. If the rate law is rate = $k[H_2O_2]$, a) determine the rate limiting step, and b) write the overall balanced reaction for this experiment.

$$H_2O_2 \rightarrow 2OH$$

 $H_2O_2 + OH \rightarrow H_2O + HO_2$

 $HO_2 + OH \rightarrow H_2O + O_2$