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2 Chapter One A LIBRARY OF FUNCTIONS

1.1 FUNCTIONS AND CHANGE

In mathematics, a function is used to represent the dependence of one quantity upon another.

Let’s look at an example. Syracuse, New York has the highest annual snowfall of any US city

because of the “lake effect” snow coming from cold Northwest winds blowing over nearby Lake

Erie. Lake effect snowfall has been heavier over the last few decades; some have suggested this is

due to the warming of Lake Erie by climate change. In December 2010, Syracuse got 66.9 inches

of snow in one 12 day period, all of it from lake effect snow. See Table 1.1.

Table 1.1 Daily snowfall in Syracuse, December 5–16, 2010

Date (December 2010) 5 6 7 8 9 10 11 12 13 14 15 16

Snowfall in inches 6.8 12.2 9.3 14.9 1.9 0.1 0.0 0.0 1.4 5.0 11.9 3.4

You may not have thought of something so unpredictable as daily snowfall as being a function,

but it is a function of date, because each day gives rise to one snowfall total. There is no formula

for the daily snowfall (otherwise we would not need a weather bureau), but nevertheless the daily

snowfall in Syracuse does satisfy the definition of a function: Each date, t, has a unique snowfall,

S, associated with it.

We define a function as follows:

A function is a rule that takes certain numbers as inputs and assigns to each a definite output

number. The set of all input numbers is called the domain of the function and the set of

resulting output numbers is called the range of the function.

The input is called the independent variable and the output is called the dependent variable. In

the snowfall example, the domain is the set of December dates {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
and the range is the set of daily snowfalls {0.0, 0.1, 1.4, 1.9, 3.4, 5.0, 6.8, 9.3, 11.9, 12.2, 14.9}. We

call the function f and write S = f(t). Notice that a function may have identical outputs for differ-

ent inputs (December 11 and 12, for example).

Some quantities, such as date, are discrete, meaning they take only certain isolated values (dates

must be integers). Other quantities, such as time, are continuous as they can be any number. For a

continuous variable, domains and ranges are often written using interval notation:

The set of numbers t such that a ≤ t ≤ b is called a closed interval and written [a, b].

The set of numbers t such that a < t < b is called an open interval and written (a, b).

The Rule of Four: Tables, Graphs, Formulas, and Words

Functions can be represented by tables, graphs, formulas, and descriptions in words. For example,

the function giving the daily snowfall in Syracuse can be represented by the graph in Figure 1.1, as

well as by Table 1.1.

6 8 10 12 14 16

3

6

9

12

15

t (date)

S (inches)

Figure 1.1: Syracuse snowfall, December, 2010

As another example of a function, consider the snow tree cricket. Surprisingly enough, all such

crickets chirp at essentially the same rate if they are at the same temperature. That means that the
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1.1 FUNCTIONS AND CHANGE 3

chirp rate is a function of temperature. In other words, if we know the temperature, we can determine

the chirp rate. Even more surprisingly, the chirp rate, C, in chirps per minute, increases steadily with

the temperature, T , in degrees Fahrenheit, and can be computed by the formula

C = 4T − 160

to a fair degree of accuracy. We write C = f(T ) to express the fact that we think of C as a function

of T and that we have named this function f . The graph of this function is in Figure 1.2.

100 14040

100

200

300

400

T (◦F)

C (chirps per minute)

C = 4T − 160

Figure 1.2: Cricket chirp rate versus temperature

Examples of Domain and Range

If the domain of a function is not specified, we usually take it to be the largest possible set of

real numbers. For example, we usually think of the domain of the function f(x) = x2 as all real

numbers. However, the domain of the function g(x) = 1/x is all real numbers except zero, since

we cannot divide by zero.

Sometimes we restrict the domain to be smaller than the largest possible set of real numbers.

For example, if the function f(x) = x2 is used to represent the area of a square of side x, we restrict

the domain to nonnegative values of x.

Example 1 The function C = f(T ) gives chirp rate as a function of temperature. We restrict this function to

temperatures for which the predicted chirp rate is positive, and up to the highest temperature ever

recorded at a weather station, 136◦F. What is the domain of this function f?

Solution If we consider the equation

C = 4T − 160

simply as a mathematical relationship between two variables C and T , any T value is possible.

However, if we think of it as a relationship between cricket chirps and temperature, then C cannot

be less than 0. Since C = 0 leads to 0 = 4T − 160, and so T = 40◦F, we see that T cannot be less

than 40◦F. (See Figure 1.2.) In addition, we are told that the function is not defined for temperatures

above 136◦. Thus, for the function C = f(T ) we have

Domain = All T values between 40◦F and 136◦F

= All T values with 40 ≤ T ≤ 136

= [40, 136].

Example 2 Find the range of the function f , given the domain from Example 1. In other words, find all possible

values of the chirp rate, C, in the equation C = f(T ).

Solution Again, if we consider C = 4T − 160 simply as a mathematical relationship, its range is all real C
values. However, when thinking of the meaning of C = f(T ) for crickets, we see that the function

predicts cricket chirps per minute between 0 (at T = 40◦F) and 384 (at T = 136◦F). Hence,

Range = All C values from 0 to 384

= All C values with 0 ≤ C ≤ 384

= [0, 384].
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4 Chapter One A LIBRARY OF FUNCTIONS

In using the temperature to predict the chirp rate, we thought of the temperature as the indepen-

dent variable and the chirp rate as the dependent variable. However, we could do this backward, and

calculate the temperature from the chirp rate. From this point of view, the temperature is dependent

on the chirp rate. Thus, which variable is dependent and which is independent may depend on your

viewpoint.

Linear Functions

The chirp-rate function, C = f(T ), is an example of a linear function. A function is linear if its

slope, or rate of change, is the same at every point. The rate of change of a function that is not linear

may vary from point to point.

Olympic and World Records

During the early years of the Olympics, the height of the men’s winning pole vault increased ap-

proximately 8 inches every four years. Table 1.2 shows that the height started at 130 inches in 1900,

and increased by the equivalent of 2 inches a year. So the height was a linear function of time from

1900 to 1912. If y is the winning height in inches and t is the number of years since 1900, we can

write

y = f(t) = 130 + 2t.

Since y = f(t) increases with t, we say that f is an increasing function. The coefficient 2 tells us

the rate, in inches per year, at which the height increases.

Table 1.2 Men’s Olympic pole vault winning height (approximate)

Year 1900 1904 1908 1912

Height (inches) 130 138 146 154

This rate of increase is the slope of the line in Figure 1.3. The slope is given by the ratio

Slope =
Rise

Run
=

146− 138

8− 4
=

8

4
= 2 inches/year.

Calculating the slope (rise/run) using any other two points on the line gives the same value.

What about the constant 130? This represents the initial height in 1900, when t = 0. Geomet-

rically, 130 is the intercept on the vertical axis.

4 8 12

130

140

150

y (height in inches)

t (years since 1900)

✲✛
Run = 4

✻
❄

Rise = 8

y = 130 + 2t

Figure 1.3: Olympic pole vault records

You may wonder whether the linear trend continues beyond 1912. Not surprisingly, it doesn’t

exactly. The formula y = 130+2t predicts that the height in the 2008 Olympics would be 346 inches

or 28 feet 10 inches, which is considerably higher than the actual value of 19 feet 6.65 inches. There

is clearly a danger in extrapolating too far from the given data. You should also observe that the data

in Table 1.2 is discrete, because it is given only at specific points (every four years). However, we

have treated the variable t as though it were continuous, because the function y = 130 + 2t makes
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1.1 FUNCTIONS AND CHANGE 5

sense for all values of t. The graph in Figure 1.3 is of the continuous function because it is a solid

line, rather than four separate points representing the years in which the Olympics were held.

As the pole vault heights have increased over the years, the time to run the mile has decreased.

If y is the world record time to run the mile, in seconds, and t is the number of years since 1900,

then records show that, approximately,

y = g(t) = 260− 0.39t.

The 260 tells us that the world record was 260 seconds in 1900 (at t = 0). The slope, −0.39, tells

us that the world record decreased by about 0.39 seconds per year. We say that g is a decreasing

function.

Difference Quotients and Delta Notation

We use the symbol ∆ (the Greek letter capital delta) to mean “change in,” so ∆x means change in

x and ∆y means change in y.

The slope of a linear function y = f(x) can be calculated from values of the function at two

points, given by x1 and x2, using the formula

m =
Rise

Run
=

∆y

∆x
=

f(x2)− f(x1)

x2 − x1
.

The quantity (f(x2)− f(x1))/(x2 − x1) is called a difference quotient because it is the quotient of

two differences. (See Figure 1.4.) Since m = ∆y/∆x, the units of m are y-units over x-units.

x1 x2

y = f(x)

✲✛
Run = x2 − x1

✻

❄

Rise = f(x2)− f(x1)

x

y

(x2, f(x2))

(x1, f(x1))

Figure 1.4: Difference quotient =
f(x2)− f(x1)

x2 − x1

Families of Linear Functions

A linear function has the form

y = f(x) = b+mx.

Its graph is a line such that

• m is the slope, or rate of change of y with respect to x.

• b is the vertical intercept, or value of y when x is zero.

Notice that if the slope, m, is zero, we have y = b, a horizontal line.

To recognize that a table of x and y values comes from a linear function, y = b +mx, look

for differences in y-values that are constant for equally spaced x-values.

Formulas such as f(x) = b +mx, in which the constants m and b can take on various values,

give a family of functions. All the functions in a family share certain properties—in this case, all the
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6 Chapter One A LIBRARY OF FUNCTIONS

graphs are straight lines. The constants m and b are called parameters; their meaning is shown in

Figures 1.5 and 1.6. Notice that the greater the magnitude of m, the steeper the line.

y = x
y = 2x

y = 0.5x

x

y

y = −x
y = −2x

y = −0.5x

Figure 1.5: The family y = mx
(with b = 0)

x

y = −1 + x

y = x

y = 1 + x

y = 2 + x

y

Figure 1.6: The family y = b+ x
(with m = 1)

Increasing versus Decreasing Functions

The terms increasing and decreasing can be applied to other functions, not just linear ones. See

Figure 1.7. In general,

A function f is increasing if the values of f(x) increase as x increases.

A function f is decreasing if the values of f(x) decrease as x increases.

The graph of an increasing function climbs as we move from left to right.

The graph of a decreasing function falls as we move from left to right.

A function f(x) is monotonic if it increases for all x or decreases for all x.

Increasing Decreasing

Figure 1.7: Increasing and decreasing functions

Proportionality

A common functional relationship occurs when one quantity is proportional to another. For exam-

ple, the area, A, of a circle is proportional to the square of the radius, r, because

A = f(r) = πr2.

We say y is (directly) proportional to x if there is a nonzero constant k such

that

y = kx.
This k is called the constant of proportionality.

We also say that one quantity is inversely proportional to another if one is proportional to the

reciprocal of the other. For example, the speed, v, at which you make a 50-mile trip is inversely

proportional to the time, t, taken, because v is proportional to 1/t:

v = 50

(
1

t

)

=
50

t
.
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1.1 FUNCTIONS AND CHANGE 7

Exercises and Problems for Section 1.1

Exercises

1. The population of a city, P , in millions, is a function of

t, the number of years since 1970, so P = f(t). Explain

the meaning of the statement f(35) = 12 in terms of the

population of this city.

2. The pollutant PCB (polychlorinated biphenyl) affects the

thickness of pelican eggs. Thinking of the thickness, T ,

of the eggs, in mm, as a function of the concentration, P ,

of PCBs in ppm (parts per million), we have T = f(P ).
Explain the meaning of f(200) in terms of thickness of

pelican eggs and concentration of PCBs.

3. Describe what Figure 1.8 tells you about an assembly

line whose productivity is represented as a function of

the number of workers on the line.

productivity

number of workers

Figure 1.8

For Exercises 4–7, find an equation for the line that passes

through the given points.

4. (0, 0) and (1, 1) 5. (0, 2) and (2, 3)

6. (−2, 1) and (2, 3) 7. (−1, 0) and (2, 6)

For Exercises 8–11, determine the slope and the y-intercept of

the line whose equation is given.

8. 2y + 5x− 8 = 0 9. 7y + 12x − 2 = 0

10. −4y + 2x+ 8 = 0 11. 12x = 6y + 4

12. Match the graphs in Figure 1.9 with the following equa-

tions. (Note that the x and y scales may be unequal.)

(a) y = x− 5 (b) −3x+ 4 = y

(c) 5 = y (d) y = −4x− 5

(e) y = x+ 6 (f) y = x/2

x

y(I)

x

y(II)

x

y(III)

x

y(IV)

x

y(V)

x

y(VI)

Figure 1.9

13. Match the graphs in Figure 1.10 with the following equa-

tions. (Note that the x and y scales may be unequal.)

(a) y = −2.72x (b) y = 0.01 + 0.001x

(c) y = 27.9 − 0.1x (d) y = 0.1x− 27.9

(e) y = −5.7− 200x (f) y = x/3.14

x

y(I)

x

y(II)

x

y(III)

x

y(IV)

x

y(V)

x

y(VI)

Figure 1.10

14. Estimate the slope and the equation of the line in Fig-

ure 1.11.

5 10

2

4

x

y

Figure 1.11

15. Find an equation for the line with slope m through the

point (a, c).

16. Find a linear function that generates the values in Ta-

ble 1.3.

Table 1.3

x 5.2 5.3 5.4 5.5 5.6

y 27.8 29.2 30.6 32.0 33.4

For Exercises 17–19, use the facts that parallel lines have

equal slopes and that the slopes of perpendicular lines are neg-

ative reciprocals of one another.

17. Find an equation for the line through the point (2, 1)
which is perpendicular to the line y = 5x− 3.

18. Find equations for the lines through the point (1, 5) that

are parallel to and perpendicular to the line with equation

y + 4x = 7.

19. Find equations for the lines through the point (a, b) that

are parallel and perpendicular to the line y = mx + c,

assuming m 6= 0.
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8 Chapter One A LIBRARY OF FUNCTIONS

For Exercises 20–23, give the approximate domain and range

of each function. Assume the entire graph is shown.

20.

1 3 5

1

3

5

y = f(x)

x

y 21.

1 3 5

2

4

6

y = f(x)

x

y

22.

−2 2

−2

2

y = f(x)

x

y 23.

1 3 5

1

3

5
y = f(x)

x

y

Find domain and range in Exercises 24–25.

24. y = x2 + 2 25. y =
1

x2 + 2

26. If f(t) =
√
t2 − 16, find all values of t for which f(t)

is a real number. Solve f(t) = 3.

In Exercises 27–31, write a formula representing the function.

27. The volume of a sphere is proportional to the cube of its

radius, r.

28. The average velocity, v, for a trip over a fixed distance,

d, is inversely proportional to the time of travel, t.

29. The strength, S, of a beam is proportional to the square

of its thickness, h.

30. The energy, E, expended by a swimming dolphin is pro-

portional to the cube of the speed, v, of the dolphin.

31. The number of animal species, N , of a certain body

length, l, is inversely proportional to the square of l.

Problems

In Problems 32–35 the function S = f(t) gives the average

annual sea level, S, in meters, in Aberdeen, Scotland,1 as a

function of t, the number of years before 2008. Write a math-

ematical expression that represents the given statement.

32. In 1983 the average annual sea level in Aberdeen was

7.019 meters.

33. The average annual sea level in Aberdeen in 2008.

34. The average annual sea level in Aberdeen was the same

in 1865 and 1911.

35. The average annual sea level in Aberdeen increased by 1
millimeter from 2007 to 2008.

36. In December 2010, the snowfall in Minneapolis was un-

usually high,2 leading to the collapse of the roof of the

Metrodome. Figure 1.12 gives the snowfall, S, in Min-

neapolis for December 6–15, 2010.

(a) How do you know that the snowfall data represents

a function of date?

(b) Estimate the snowfall on December 12.

(c) On which day was the snowfall more than 10 inches?

(d) During which consecutive two-day interval was the

increase in snowfall largest?

6 7 8 9 10 11 12 13 14 15

5

10

15

t (date)

S (inches)

Figure 1.12

37. The value of a car, V = f(a), in thousands of dollars, is

a function of the age of the car, a, in years.

(a) Interpret the statement f(5) = 6
(b) Sketch a possible graph of V against a. Is f an in-

creasing or decreasing function? Explain.

(c) Explain the significance of the horizontal and verti-

cal intercepts in terms of the value of the car.

38. Which graph in Figure 1.13 best matches each of the fol-

lowing stories?3 Write a story for the remaining graph.

(a) I had just left home when I realized I had forgotten

my books, and so I went back to pick them up.

(b) Things went fine until I had a flat tire.

(c) I started out calmly but sped up when I realized I

was going to be late.

1www.decc.gov.uk, accessed June 2011
2http://www.crh.noaa.gov/mpx/Climate/DisplayRecords.php
3Adapted from Jan Terwel, “Real Math in Cooperative Groups in Secondary Education.” Cooperative Learning in Math-

ematics, ed. Neal Davidson, p. 234 (Reading: Addison Wesley, 1990).
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1.1 FUNCTIONS AND CHANGE 9

distance
from home

time

(I) distance
from home

time

(II)

distance
from home

time

(III) distance
from home

time

(IV)

Figure 1.13

39. An object is put outside on a cold day at time t = 0. Its

temperature, H = f(t), in ◦C, is graphed in Figure 1.14.

(a) What does the statement f(30) = 10 mean in terms

of temperature? Include units for 30 and for 10 in

your answer.

(b) Explain what the vertical intercept, a, and the hori-

zontal intercept, b, represent in terms of temperature

of the object and time outside.

b

a

t (min)

H (◦C)

Figure 1.14

40. A rock is dropped from a window and falls to the ground

below. The height, s (in meters), of the rock above

ground is a function of the time, t (in seconds), since the

rock was dropped, so s = f(t).

(a) Sketch a possible graph of s as a function of t.
(b) Explain what the statement f(7) = 12 tells us about

the rock’s fall.

(c) The graph drawn as the answer for part (a) should

have a horizontal and vertical intercept. Interpret

each intercept in terms of the rock’s fall.

41. In a California town, the monthly charge for waste col-

lection is $8 for 32 gallons of waste and $12.32 for 68
gallons of waste.

(a) Find a linear formula for the cost, C, of waste collec-

tion as a function of the number of gallons of waste,

w.

(b) What is the slope of the line found in part (a)? Give

units and interpret your answer in terms of the cost

of waste collection.

(c) What is the vertical intercept of the line found in

part (a)? Give units and interpret your answer in

terms of the cost of waste collection.

42. For tax purposes, you may have to report the value of

your assets, such as cars or refrigerators. The value you

report drops with time. “Straight-line depreciation” as-

sumes that the value is a linear function of time. If a $950

refrigerator depreciates completely in seven years, find a

formula for its value as a function of time.

43. A company rents cars at $40 a day and 15 cents a mile.

Its competitor’s cars are $50 a day and 10 cents a mile.

(a) For each company, give a formula for the cost of

renting a car for a day as a function of the distance

traveled.

(b) On the same axes, graph both functions.

(c) How should you decide which company is cheaper?

44. Residents of the town of Maple Grove who are connected

to the municipal water supply are billed a fixed amount

monthly plus a charge for each cubic foot of water used.

A household using 1000 cubic feet was billed $40, while

one using 1600 cubic feet was billed $55.

(a) What is the charge per cubic foot?

(b) Write an equation for the total cost of a resident’s

water as a function of cubic feet of water used.

(c) How many cubic feet of water used would lead to a

bill of $100?

Problems 45–48 ask you to plot graphs based on the follow-

ing story: “As I drove down the highway this morning, at first

traffic was fast and uncongested, then it crept nearly bumper-

to-bumper until we passed an accident, after which traffic flow

went back to normal until I exited.”

45. Driving speed against time on the highway

46. Distance driven against time on the highway

47. Distance from my exit vs time on the highway

48. Distance between cars vs distance driven on the highway

49. Let f(t) be the number of US billionaires in the US in

year t.

(a) Express the following statements4 in terms of f .

(i) In 1985 there were 13 US billionaires.

(ii) In 1990 there were 99 US billionaires.

(b) Find the average yearly increase in the number of US

billionaires between 1985 and 1990. Express this us-

ing f .

(c) Assuming the yearly increase remains constant, find

a formula predicting the number of US billionaires

in year t.

4//hypertextbook.com/facts/2005/MichelleLee.shtml
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10 Chapter One A LIBRARY OF FUNCTIONS

50. An alternative to petroleum-based diesel fuel, biodiesel,

is derived from renewable resources such as food crops,

algae, and animal oils. The table shows the recent annual

percent growth in US biodiesel consumption.5

Year 2005 2006 2007 2008 2009

% growth over previous yr 237 186.6 37.2 −11.7 7.3

(a) Find the largest time interval over which the per-

centage growth in the US consumption of biodiesel

was an increasing function of time. Interpret what

increasing means, practically speaking, in this case.

(b) Find the largest time interval over which the ac-

tual US consumption of biodiesel was an increasing

function of time. Interpret what increasing means,

practically speaking, in this case.

51. Hydroelectric power is electric power generated by the

force of moving water. Figure 1.15 shows6 the annual

percent growth in hydroelectric power consumption by

the US industrial sector between 2004 and 2009.

(a) Find the largest time interval over which the percent-

age growth in the US consumption of hydroelectric

power was a decreasing function of time. Interpret

what decreasing means, practically speaking, in this

case.

(b) Find the largest time interval over which the actual

US consumption of hydroelectric power was a de-

creasing function of time. Interpret what decreasing

means, practically speaking, in this case.

2005

2007 2009

−50
−40
−30
−20
−10

10
year

percent growth
over previous year

Figure 1.15

52. Solar panels are arrays of photovoltaic cells that convert

solar radiation into electricity. The table shows the an-

nual percent change in the US price per watt of a solar

panel.7

Year 2004 2005 2006 2007 2008

% growth over previous yr −5.7 6.7 9.7 −3.7 3.6

(a) Find the largest time interval over which the percent-

age growth in the US price per watt of a solar panel

was an increasing function of time. Interpret what

increasing means, practically speaking, in this case.

(b) Find the largest time interval over which the actual

price per watt of a solar panel was an increasing

function of time. Interpret what increasing means,

practically speaking, in this case.

53. Table 1.4 shows the average annual sea level, S, in me-

ters, in Aberdeen, Scotland,8 as a function of time, t,
measured in years before 2008.

Table 1.4

t 0 25 50 75 100 125

S 7.094 7.019 6.992 6.965 6.938 6.957

(a) What was the average sea level in Aberdeen in

2008?

(b) In what year was the average sea level 7.019 meters?

6.957 meters?

(c) Table 1.5 gives the average sea level, S, in Aberdeen

as a function of the year, x. Complete the missing

values.

Table 1.5

x 1883 ? 1933 1958 1983 2008

S ? 6.938 ? 6.992 ? ?

54. A controversial 1992 Danish study9 reported that men’s

average sperm count has decreased from 113 million per

milliliter in 1940 to 66 million per milliliter in 1990.

(a) Express the average sperm count, S, as a linear func-

tion of the number of years, t, since 1940.

(b) A man’s fertility is affected if his sperm count drops

below about 20 million per milliliter. If the linear

model found in part (a) is accurate, in what year will

the average male sperm count fall below this level?

55. The table gives the average weight, w, in pounds, of

American men in their sixties for height, h, in inches.10

(a) How do you know that the data in this table could

represent a linear function?

(b) Find weight, w, as a linear function of height, h.

What is the slope of the line? What are the units for

the slope?

5http://www.eia.doe.gov/aer/renew.html. Accessed February 2011.
6Yearly values have been joined with segments to highlight trends in the data, however values in between years should

not be inferred from the segments. From http://www.eia.doe.gov/aer/renew.html. Accessed February 2011.
7We use the official price per peak watt, which uses the maximum number of watts a solar panel can produce under ideal

conditions. From http://www.eia.doe.gov/aer/renew.html. Accessed February 2011.
8www.decc.gov.uk, accessed June 2011.
9“Investigating the Next Silent Spring,” US News and World Report, pp. 50–52 (March 11, 1996).

10Adapted from “Average Weight of Americans by Height and Age,” The World Almanac (New Jersey: Funk and Wagnalls,

1992), p. 956.
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1.1 FUNCTIONS AND CHANGE 11

(c) Find height, h, as a linear function of weight, w.

What is the slope of the line? What are the units for

the slope?

h (inches) 68 69 70 71 72 73 74 75

w (pounds) 166 171 176 181 186 191 196 201

56. An airplane uses a fixed amount of fuel for takeoff, a (dif-

ferent) fixed amount for landing, and a third fixed amount

per mile when it is in the air. How does the total quantity

of fuel required depend on the length of the trip? Write

a formula for the function involved. Explain the meaning

of the constants in your formula.

57. The cost of planting seed is usually a function of the

number of acres sown. The cost of the equipment is a

fixed cost because it must be paid regardless of the num-

ber of acres planted. The costs of supplies and labor vary

with the number of acres planted and are called variable

costs. Suppose the fixed costs are $10,000 and the vari-

able costs are $200 per acre. Let C be the total cost, mea-

sured in thousands of dollars, and let x be the number of

acres planted.

(a) Find a formula for C as a function of x.

(b) Graph C against x.

(c) Which feature of the graph represents the fixed

costs? Which represents the variable costs?

58. You drive at a constant speed from Chicago to Detroit,

a distance of 275 miles. About 120 miles from Chicago

you pass through Kalamazoo, Michigan. Sketch a graph

of your distance from Kalamazoo as a function of time.

59. (a) Consider the functions graphed in Figure 1.16(a).

Find the coordinates of C.

(b) Consider the functions in Figure 1.16(b). Find the

coordinates of C in terms of b.

y = x2

(0, 2)

(1, 1)

C

(a) y

x

y = x2

(0, b)

(1, 1)

C

(b) y

x

Figure 1.16

60. When Galileo was formulating the laws of motion, he

considered the motion of a body starting from rest and

falling under gravity. He originally thought that the ve-

locity of such a falling body was proportional to the dis-

tance it had fallen. What do the experimental data in Ta-

ble 1.6 tell you about Galileo’s hypothesis? What alter-

native hypothesis is suggested by the two sets of data in

Table 1.6 and Table 1.7?

Table 1.6

Distance (ft) 0 1 2 3 4

Velocity (ft/sec) 0 8 11.3 13.9 16

Table 1.7

Time (sec) 0 1 2 3 4

Velocity (ft/sec) 0 32 64 96 128

Strengthen Your Understanding

In Problems 61–62, explain what is wrong with the statement.

61. Values of y on the graph of y = 0.5x − 3 increase more

slowly than values of y on the graph of y = 0.5− 3x.

62. The equation y = 2x+ 1 indicates that y is directly pro-

portional to x with a constant of proportionality 2.

In Problems 63–64, give an example of:

63. A linear function with a positive slope and a negative x-

intercept.

64. A formula representing the statement “q is inversely pro-

portional to the cube root of p and has a positive constant

of proportionality.”

Are the statements in Problems 65–68 true or false? Give an

explanation for your answer.

65. For any two points in the plane, there is a linear function

whose graph passes through them.

66. If y = f(x) is a linear function, then increasing x by 1

unit changes the corresponding y by m units, where m is

the slope.

67. If y is a linear function of x, then the ratio y/x is constant

for all points on the graph at which x 6= 0.

68. If y = f(x) is a linear function, then increasing x by 2

units adds m + 2 units to the corresponding y, where m
is the slope.

69. Which of the following functions has its domain identical

with its range?

(a) f(x) = x2 (b) g(x) =
√
x

(c) h(x) = x3 (d) i(x) = |x|
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12 Chapter One A LIBRARY OF FUNCTIONS

1.2 EXPONENTIAL FUNCTIONS

Population Growth

The population of Burkina Faso, a sub-Saharan African country,11 from 2003 to 2009 is given in

Table 1.8. To see how the population is growing, we look at the increase in population in the third

column. If the population had been growing linearly, all the numbers in the third column would be

the same.

Table 1.8 Population of Burkina Faso

(estimated), 2003–2009

Year Population Change in

(millions) population (millions)

2003 12.853

2004 13.290
0.437

2005 13.747
0.457

2006 14.225
0.478

2007 14.721
0.496

2008 15.234
0.513

2009 15.757
0.523

−10 10 20 30 40 50

20

40

60

t (years since 2003)

P (population in millions)

P = 12.853(1.034)t

Figure 1.17: Population of Burkina Faso (estimated):

Exponential growth

Suppose we divide each year’s population by the previous year’s population. For example,

Population in 2004

Population in 2003
=

13.290 million

12.853 million
= 1.034

Population in 2005

Population in 2004
=

13.747 million

13.290 million
= 1.034.

The fact that both calculations give 1.034 shows the population grew by about 3.4% between 2003

and 2004 and between 2004 and 2005. Similar calculations for other years show that the popula-

tion grew by a factor of about 1.034, or 3.4%, every year. Whenever we have a constant growth

factor (here 1.034), we have exponential growth. The population t years after 2003 is given by the

exponential function

P = 12.853(1.034)t.

If we assume that the formula holds for 50 years, the population graph has the shape shown in

Figure 1.17. Since the population is growing faster and faster as time goes on, the graph is bending

upward; we say it is concave up. Even exponential functions which climb slowly at first, such as

this one, eventually climb extremely quickly.

To recognize that a table of t and P values comes from an exponential function, look for

ratios of P values that are constant for equally spaced t values.

Concavity
We have used the term concave up12 to describe the graph in Figure 1.17. In words:

The graph of a function is concave up if it bends upward as we move left to right; it is

concave down if it bends downward. (See Figure 1.18 for four possible shapes.) A line is

neither concave up nor concave down.

11dataworldbank.org, accessed January 12, 2011.
12In Chapter 2 we consider concavity in more depth.
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1.2 EXPONENTIAL FUNCTIONS 13

Concave
up

Concave
down

Figure 1.18: Concavity of a graph

Elimination of a Drug from the Body
Now we look at a quantity which is decreasing exponentially instead of increasing. When a patient is

given medication, the drug enters the bloodstream. As the drug passes through the liver and kidneys,

it is metabolized and eliminated at a rate that depends on the particular drug. For the antibiotic

ampicillin, approximately 40% of the drug is eliminated every hour. A typical dose of ampicillin

is 250 mg. Suppose Q = f(t), where Q is the quantity of ampicillin, in mg, in the bloodstream at

time t hours since the drug was given. At t = 0, we have Q = 250. Since every hour the amount

remaining is 60% of the previous amount, we have

f(0) = 250

f(1) = 250(0.6)

f(2) = (250(0.6))(0.6) = 250(0.6)2,

and after t hours,

Q = f(t) = 250(0.6)t.

This is an exponential decay function. Some values of the function are in Table 1.9; its graph is in

Figure 1.19.

Notice the way in which the function in Figure 1.19 is decreasing. Each hour a smaller quantity

of the drug is removed than in the previous hour. This is because as time passes, there is less of the

drug in the body to be removed. Compare this to the exponential growth in Figure 1.17, where each

step upward is larger than the previous one. Notice, however, that both graphs are concave up.

Table 1.9 Drug

elimination

t (hours) Q (mg)

0 250

1 150

2 90

3 54

4 32.4

5 19.4

1 2 3 4 5

50

100

150

200

250

t (hours)

Q (mg)

Figure 1.19: Drug elimination: Exponential decay

The General Exponential Function

We say P is an exponential function of t with base a if

P = P0a
t,

where P0 is the initial quantity (when t = 0) and a is the factor by which P changes when t
increases by 1.

If a > 1, we have exponential growth; if 0 < a < 1, we have exponential decay.
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14 Chapter One A LIBRARY OF FUNCTIONS

Provided a > 0, the largest possible domain for the exponential function is all real numbers. The

reason we do not want a ≤ 0 is that, for example, we cannot define a1/2 if a < 0. Also, we do not

usually have a = 1, since P = P01
t = P0 is then a constant function.

The value of a is closely related to the percent growth (or decay) rate. For example, if a = 1.03,

then P is growing at 3%; if a = 0.94, then P is decaying at 6%.

Example 1 Suppose that Q = f(t) is an exponential function of t. If f(20) = 88.2 and f(23) = 91.4:

(a) Find the base. (b) Find the growth rate. (c) Evaluate f(25).

Solution (a) Let

Q = Q0a
t.

Substituting t = 20, Q = 88.2 and t = 23, Q = 91.4 gives two equations for Q0 and a:

88.2 = Q0a
20 and 91.4 = Q0a

23.

Dividing the two equations enables us to eliminate Q0:

91.4

88.2
=

Q0a
23

Q0a20
= a3.

Solving for the base, a, gives

a =

(
91.4

88.2

)1/3

= 1.012.

(b) Since a = 1.012, the growth rate is 0.012 = 1.2%.

(c) We want to evaluate f(25) = Q0a
25 = Q0(1.012)

25. First we find Q0 from the equation

88.2 = Q0(1.012)
20.

Solving gives Q0 = 69.5. Thus,

f(25) = 69.5(1.012)25 = 93.6.

Half-Life and Doubling Time
Radioactive substances, such as uranium, decay exponentially. A certain percentage of the mass

disintegrates in a given unit of time; the time it takes for half the mass to decay is called the half-life

of the substance.

A well-known radioactive substance is carbon-14, which is used to date organic objects. When

a piece of wood or bone was part of a living organism, it accumulated small amounts of radioactive

carbon-14. Once the organism dies, it no longer picks up carbon-14. Using the half-life of carbon-14

(about 5730 years), we can estimate the age of the object. We use the following definitions:

The half-life of an exponentially decaying quantity is the time required for the quantity to be

reduced by a factor of one half.

The doubling time of an exponentially increasing quantity is the time required for the quan-

tity to double.
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1.2 EXPONENTIAL FUNCTIONS 15

The Family of Exponential Functions
The formula P = P0a

t gives a family of exponential functions with positive parameters P0 (the

initial quantity) and a (the base, or growth/decay factor). The base tells us whether the function is

increasing (a > 1) or decreasing (0 < a < 1). Since a is the factor by which P changes when

t is increased by 1, large values of a mean fast growth; values of a near 0 mean fast decay. (See

Figures 1.20 and 1.21.) All members of the family P = P0a
t are concave up.

1 2 3 4 5 6 7

10

20

30

40

t

P

10t
5t 3t 2t

(1.5)t

Figure 1.20: Exponential growth: P = at, for a > 1

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

t

P

(0.1)t
(0.5)t (0.8)t

(0.9)t

(0.95)t

Figure 1.21: Exponential decay: P = at, for 0 < a < 1

Example 2 Figure 1.22 is the graph of three exponential functions. What can you say about the values of the

six constants, a, b, c, d, p, q?

y = p · qx

y = c · dx

y = a · bx
x

y

Figure 1.22

Solution All the constants are positive. Since a, c, p represent y-intercepts, we see that a = c because these

graphs intersect on the y-axis. In addition, a = c < p, since y = p · qx crosses the y-axis above the

other two.

Since y = a · bx is decreasing, we have 0 < b < 1. The other functions are increasing, so 1 < d
and 1 < q.

Exponential Functions with Base e

The most frequently used base for an exponential function is the famous number e = 2.71828 . . . .
This base is used so often that you will find an ex button on most scientific calculators. At first

glance, this is all somewhat mysterious. Why is it convenient to use the base 2.71828 . . .? The full

answer to that question must wait until Chapter 3, where we show that many calculus formulas come

out neatly when e is used as the base. We often use the following result:
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16 Chapter One A LIBRARY OF FUNCTIONS

Any exponential growth function can be written, for some a > 1 and k > 0, in the form

P = P0a
t or P = P0e

kt

and any exponential decay function can be written, for some 0 < a < 1 and −k < 0, as

Q = Q0a
t or Q = Q0e

−kt,

where P0 and Q0 are the initial quantities.

We say that P and Q are growing or decaying at a continuous13 rate of k. (For exam-

ple, k = 0.02 corresponds to a continuous rate of 2%.)

Example 3 Convert the functions P = e0.5t and Q = 5e−0.2t into the form y = y0a
t. Use the results to explain

the shape of the graphs in Figures 1.23 and 1.24.

1 2 3 4 5 6 7

10

20

30

t

P

1

P = e0.5t

Figure 1.23: An exponential growth function

2 4 6 8 10

1

2

3

4

5

t

Q

Q = 5e−0.2t

Figure 1.24: An exponential decay function

Solution We have

P = e0.5t = (e0.5)t = (1.65)t.

Thus, P is an exponential growth function with P0 = 1 and a = 1.65. The function is increasing

and its graph is concave up, similar to those in Figure 1.20. Also,

Q = 5e−0.2t = 5(e−0.2)t = 5(0.819)t,

so Q is an exponential decay function with Q0 = 5 and a = 0.819. The function is decreasing and

its graph is concave up, similar to those in Figure 1.21.

Example 4 The quantity, Q, of a drug in a patient’s body at time t is represented for positive constants S and

k by the function Q = S(1 − e−kt). For t ≥ 0, describe how Q changes with time. What does S
represent?

Solution The graph of Q is shown in Figure 1.25. Initially none of the drug is present, but the quantity

increases with time. Since the graph is concave down, the quantity increases at a decreasing rate.

This is realistic because as the quantity of the drug in the body increases, so does the rate at which

the body excretes the drug. Thus, we expect the quantity to level off. Figure 1.25 shows that S is the

saturation level. The line Q = S is called a horizontal asymptote.

13The reason that k is called the continuous rate is explored in detail in Chapter 11.
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1.2 EXPONENTIAL FUNCTIONS 17

1 2 3 4 5
t (time in hours)

S

Q (quantity of drug) Saturation level
✠

Figure 1.25: Buildup of the quantity of a drug in body

Exercises and Problems for Section 1.2

Exercises

In Exercises 1–4, decide whether the graph is concave up, con-

cave down, or neither.

1.

x

2.

x

3.

x

4.
x

The functions in Exercises 5–8 represent exponential growth

or decay. What is the initial quantity? What is the growth rate?

State if the growth rate is continuous.

5. P = 5(1.07)t 6. P = 7.7(0.92)t

7. P = 3.2e0.03t 8. P = 15e−0.06t

Write the functions in Exercises 9–12 in the form P = P0a
t.

Which represent exponential growth and which represent ex-

ponential decay?

9. P = 15e0.25t 10. P = 2e−0.5t

11. P = P0e
0.2t 12. P = 7e−πt

In Exercises 13–14, let f(t) = Q0a
t = Q0(1 + r)t.

(a) Find the base, a.

(b) Find the percentage growth rate, r.

13. f(5) = 75.94 and f(7) = 170.86

14. f(0.02) = 25.02 and f(0.05) = 25.06

15. A town has a population of 1000 people at time t = 0.

In each of the following cases, write a formula for the

population, P , of the town as a function of year t.

(a) The population increases by 50 people a year.

(b) The population increases by 5% a year.

16. An air-freshener starts with 30 grams and evaporates. In

each of the following cases, write a formula for the quan-

tity, Q grams, of air-freshener remaining t days after the

start and sketch a graph of the function. The decrease is:

(a) 2 grams a day (b) 12% a day

17. For which pairs of consecutive points in Figure 1.26 is

the function graphed:

(a) Increasing and concave up?

(b) Increasing and concave down?

(c) Decreasing and concave up?

(d) Decreasing and concave down?

A

B

C

D

E

F
G

H

I

x

Figure 1.26

18. The table gives the average temperature in Wallingford,

Connecticut, for the first 10 days in March.

(a) Over which intervals was the average temperature

increasing? Decreasing?

(b) Find a pair of consecutive intervals over which the

average temperature was increasing at a decreasing

rate. Find another pair of consecutive intervals over

which the average temperature was increasing at an

increasing rate.

Day 1 2 3 4 5 6 7 8 9 10

◦F 42◦ 42◦ 34◦ 25◦ 22◦ 34◦ 38◦ 40◦ 49◦ 49◦
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18 Chapter One A LIBRARY OF FUNCTIONS

Problems

19. (a) Which (if any) of the functions in the following table

could be linear? Find formulas for those functions.

(b) Which (if any) of these functions could be exponen-

tial? Find formulas for those functions.

x f(x) g(x) h(x)

−2 12 16 37

−1 17 24 34

0 20 36 31

1 21 54 28

2 18 81 25

In Problems 20–21, find all the tables that have the given char-

acteristic.

(A)
x 0 40 80 160

y 2.2 2.2 2.2 2.2

(B)
x −8 −4 0 8

y 51 62 73 95

(C)
x −4 −3 4 6

y 18 0 4.5 −2.25

(D)
x 3 4 5 6

y 18 9 4.5 2.25

20. y could be a linear function of x.

21. y could be an exponential function of x.

22. In 2010, the world’s population reached 6.91 billion and

was increasing at a rate of 1.1% per year. Assume that

this growth rate remains constant. (In fact, the growth rate

has decreased since 1987.)

(a) Write a formula for the world population (in bil-

lions) as a function of the number of years since

2010.

(b) Estimate the population of the world in the year

2020.

(c) Sketch world population as a function of years since

2010. Use the graph to estimate the doubling time of

the population of the world.

23. (a) A population, P , grows at a continuous rate of 2%

a year and starts at 1 million. Write P in the form

P = P0e
kt, with P0, k constants.

(b) Plot the population in part (a) against time.

24. A certain region has a population of 10,000,000 and an

annual growth rate of 2%. Estimate the doubling time by

guessing and checking.

25. A photocopy machine can reduce copies to 80% of their

original size. By copying an already reduced copy, fur-

ther reductions can be made.

(a) If a page is reduced to 80%, what percent enlarge-

ment is needed to return it to its original size?

(b) Estimate the number of times in succession that a

page must be copied to make the final copy less than

15% of the size of the original.

26. When a new product is advertised, more and more people

try it. However, the rate at which new people try it slows

as time goes on.

(a) Graph the total number of people who have tried

such a product against time.

(b) What do you know about the concavity of the graph?

27. Sketch reasonable graphs for the following. Pay particu-

lar attention to the concavity of the graphs.

(a) The total revenue generated by a car rental business,

plotted against the amount spent on advertising.

(b) The temperature of a cup of hot coffee standing in a

room, plotted as a function of time.

28. Each of the functions g, h, k in Table 1.10 is increasing,

but each increases in a different way. Which of the graphs

in Figure 1.27 best fits each function?

(a) (b)

(c)

Figure 1.27

Table 1.10

t g(t) h(t) k(t)

1 23 10 2.2

2 24 20 2.5

3 26 29 2.8

4 29 37 3.1

5 33 44 3.4

6 38 50 3.7

29. Each of the functions in Table 1.11 decreases, but each

decreases in a different way. Which of the graphs in Fig-

ure 1.28 best fits each function?

(a) (b)

(c)

Figure 1.28

Table 1.11

x f(x) g(x) h(x)

1 100 22.0 9.3

2 90 21.4 9.1

3 81 20.8 8.8

4 73 20.2 8.4

5 66 19.6 7.9

6 60 19.0 7.3
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1.2 EXPONENTIAL FUNCTIONS 19

30. One of the main contaminants of a nuclear accident, such

as that at Chernobyl, is strontium-90, which decays ex-

ponentially at a continuous rate of approximately 2.47%

per year. After the Chernobyl disaster, it was suggested

that it would be about 100 years before the region would

again be safe for human habitation. What percent of the

original strontium-90 would still remain then?

Give a possible formula for the functions in Problems 31–34.

31.

3

y

x

(2, 12)

32. y

x

(−1, 8) (1, 2)

33. y

x
(1, 6)

(2, 18)

34.

4

y

(1, 2)

x

35. Table 1.12 shows some values of a linear function f and

an exponential function g. Find exact values (not decimal

approximations) for each of the missing entries.

Table 1.12

x 0 1 2 3 4

f(x) 10 ? 20 ? ?

g(x) 10 ? 20 ? ?

36. Match the functions h(s), f(s), and g(s), whose values

are in Table 1.13, with the formulas

y = a(1.1)s , y = b(1.05)s , y = c(1.03)s,

assuming a, b, and c are constants. Note that the function

values have been rounded to two decimal places.

Table 1.13

s h(s) s f(s) s g(s)

2 1.06 1 2.20 3 3.47

3 1.09 2 2.42 4 3.65

4 1.13 3 2.66 5 3.83

5 1.16 4 2.93 6 4.02

6 1.19 5 3.22 7 4.22

37. (a) Estimate graphically the doubling time of the expo-

nentially growing population shown in Figure 1.29.

Check that the doubling time is independent of

where you start on the graph.

(b) Show algebraically that if P = P0a
t doubles be-

tween time t and time t+d, then d is the same num-

ber for any t.

1 2 3 4 5 6 7 8 9

20,000

40,000

60,000

80,000

time (years)

population

Figure 1.29

38. A deposit of P0 into a bank account has a doubling time

of 50 years. No other deposits or withdrawals are made.

(a) How much money is in the bank account after 50

years? 100 years? 150 years? (Your answer will in-

volve P0.)

(b) How many times does the amount of money double

in t years? Use this to write a formula for P , the

amount of money in the account after t years.

39. A 325 mg aspirin has a half-life of H hours in a patient’s

body.

(a) How long does it take for the quantity of aspirin

in the patient’s body to be reduced to 162.5 mg?

To 81.25 mg? To 40.625 mg? (Note that 162.5 =
325/2, etc. Your answers will involve H .)

(b) How many times does the quantity of aspirin, A mg,

in the body halve in t hours? Use this to give a for-

mula for A after t hours.

40. (a) The half-life of radium-226 is 1620 years. If the ini-

tial quantity of radium is Q0, explain why the quan-

tity, Q, of radium left after t years, is given by

Q = Q0

(
1

2

)t/1620

.

(b) What percentage of the original amount of radium is

left after 500 years?

41. In the early 1960s, radioactive strontium-90 was re-

leased during atmospheric testing of nuclear weapons

and got into the bones of people alive at the time. If

the half-life of strontium-90 is 29 years, what fraction

of the strontium-90 absorbed in 1960 remained in peo-

ple’s bones in 2010? [Hint: Write the function in the form

Q = Q0(1/2)
t/29.]

42. Aircraft require longer takeoff distances, called takeoff

rolls, at high altitude airports because of diminished air

density. The table shows how the takeoff roll for a certain

light airplane depends on the airport elevation. (Takeoff

rolls are also strongly influenced by air temperature; the

data shown assume a temperature of 0◦ C.) Determine a

formula for this particular aircraft that gives the takeoff

roll as an exponential function of airport elevation.

Elevation (ft) Sea level 1000 2000 3000 4000

Takeoff roll (ft) 670 734 805 882 967
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20 Chapter One A LIBRARY OF FUNCTIONS

Problems 43–44 concern biodiesel, a fuel derived from renew-

able resources such as food crops, algae, and animal oils. The

table shows the percent growth over the previous year in US

biodiesel consumption.14

Year 2003 2004 2005 2006 2007 2008 2009

% growth −12.5 92.9 237 186.6 37.2 −11.7 7.3

43. (a) According to the US Department of Energy, the US

consumed 91 million gallons of biodiesel in 2005.

Approximately how much biodiesel (in millions of

gallons) did the US consume in 2006? In 2007?

(b) Graph the points showing the annual US consump-

tion of biodiesel, in millions of gallons of biodiesel,

for the years 2005 to 2009. Label the scales on the

horizontal and vertical axes.

44. (a) True or false: The annual US consumption of

biodiesel grew exponentially from 2003 to 2005.

Justify your answer without doing any calculations.

(b) According to this data, during what single year(s),

if any, did the US consumption of biodiesel at least

double?

(c) According to this data, during what single year(s),

if any, did the US consumption of biodiesel at least

triple?

45. Hydroelectric power is electric power generated by the

force of moving water. The table shows the annual per-

cent change in hydroelectric power consumption by the

US industrial sector.15

Year 2005 2006 2007 2008 2009

% growth over previous yr −1.9 −10 −45.4 5.1 11

(a) According to the US Department of Energy, the US

industrial sector consumed about 29 trillion BTUs

of hydroelectric power in 2006. Approximately how

much hydroelectric power (in trillion BTUs) did the

US consume in 2007? In 2005?

(b) Graph the points showing the annual US consump-

tion of hydroelectric power, in trillion BTUs, for the

years 2004 to 2009. Label the scales on the horizon-

tal and vertical axes.

(c) According to this data, when did the largest yearly

decrease, in trillion BTUs, in the US consumption of

hydroelectric power occur? What was this decrease?

Problems 46–47 concern wind power, which has been used for

centuries to propel ships and mill grain. Modern wind power

is obtained from windmills which convert wind energy into

electricity. Figure 1.30 shows the annual percent growth in

US wind power consumption16 between 2005 and 2009.

2007 2009

20

40

60

year

percent growth
over previous year

Figure 1.30

46. (a) According to the US Department of Energy, the US

consumption of wind power was 341 trillion BTUs

in 2007. How much wind power did the US consume

in 2006? In 2008?

(b) Graph the points showing the annual US consump-

tion of wind power, in trillion BTUs, for the years

2005 to 2009. Label the scales on the horizontal and

vertical axes.

(c) Based on this data, in what year did the largest yearly

increase, in trillion BTUs, in the US consumption of

wind power occur? What was this increase?

47. (a) According to Figure 1.30, during what single

year(s), if any, did the US consumption of wind

power energy increase by at least 40%? Decrease by

at least 40%?

(b) Did the US consumption of wind power energy dou-

ble from 2006 to 2008?

Strengthen Your Understanding

In Problems 48–49, explain what is wrong with the statement.

48. The function y = e−0.25x is decreasing and its graph is

concave down.

49. The function y = 2x is increasing, and its graph is con-

cave up.

In Problems 50–52, give an example of:

50. A formula representing the statement “q decreases at a

constant percent rate, and q = 2.2 when t = 0. ”

51. A function that is increasing at a constant percent rate and

that has the same vertical intercept as f(x) = 0.3x+ 2.

52. A function with a horizontal asymptote at y = −5 and

range y > −5.

14http://www.eia.doe.gov/aer/renew.html. Accessed February 2011.
15From http://www.eia.doe.gov/aer/renew.html. Accessed February 2011.
16Yearly values have been joined with segments to highlight trends in the data. Actual values in between years should not

be inferred from the segments. From http://www.eia.doe.gov/aer/renew.html. Accessed February 2011.
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1.3 NEW FUNCTIONS FROM OLD 21

Are the statements in Problems 53–59 true or false? Give an

explanation for your answer.

53. The function y = 2 + 3e−t has a y-intercept of y = 3.

54. The function y = 5− 3e−4t has a horizontal asymptote

of y = 5.

55. If y = f(x) is an exponential function and if increasing

x by 1 increases y by a factor of 5, then increasing x by

2 increases y by a factor of 10.

56. If y = Abx and increasing x by 1 increases y by a factor

of 3, then increasing x by 2 increases y by a factor of 9.

57. An exponential function can be decreasing.

58. If a and b are positive constants, b 6= 1, then y = a+abx

has a horizontal asymptote.

59. The function y = 20/(1 + 2e−kt) with k > 0, has a

horizontal asymptote at y = 20.

1.3 NEW FUNCTIONS FROM OLD

Shifts and Stretches

The graph of a constant multiple of a given function is easy to visualize: each y-value is stretched

or shrunk by that multiple. For example, consider the function f(x) and its multiples y = 3f(x)
and y = −2f(x). Their graphs are shown in Figure 1.31. The factor 3 in the function y = 3f(x)
stretches each f(x) value by multiplying it by 3; the factor −2 in the function y = −2f(x) stretches

f(x) by multiplying by 2 and reflects it about the x-axis. You can think of the multiples of a given

function as a family of functions.

3

−3

y

x

y = 3f(x)

y = −2f(x)

y = f(x)

Figure 1.31: Multiples of the function f(x)

4

y

x

y = x2 + 4

y = x2

2
x

y

y = (x− 2)2

y = x2

Figure 1.32: Graphs of y = x2 with y = x2 + 4 and

y = (x− 2)2

It is also easy to create families of functions by shifting graphs. For example, y− 4 = x2 is the

same as y = x2 + 4, which is the graph of y = x2 shifted up by 4. Similarly, y = (x − 2)2 is the

graph of y = x2 shifted right by 2. (See Figure 1.32.)

• Multiplying a function by a constant, c, stretches the graph vertically (if c > 1) or shrinks

the graph vertically (if 0 < c < 1). A negative sign (if c < 0) reflects the graph about the

x-axis, in addition to shrinking or stretching.

• Replacing y by (y − k) moves a graph up by k (down if k is negative).

• Replacing x by (x− h) moves a graph to the right by h (to the left if h is negative).

Composite Functions

If oil is spilled from a tanker, the area of the oil slick grows with time. Suppose that the oil slick is

always a perfect circle. Then the area, A, of the oil slick is a function of its radius, r:

A = f(r) = πr2.

The radius is also a function of time, because the radius increases as more oil spills. Thus, the area,

being a function of the radius, is also a function of time. If, for example, the radius is given by

r = g(t) = 1 + t,
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22 Chapter One A LIBRARY OF FUNCTIONS

then the area is given as a function of time by substitution:

A = πr2 = π(1 + t)2.

We are thinking of A as a composite function or a “function of a function,” which is written

A = f(g(t))
︸ ︷︷ ︸

Composite function;
f is outside function,
g is inside function

= π(g(t))2 = π(1 + t)2.

To calculate A using the formula π(1 + t)2, the first step is to find 1 + t, and the second step is to

square and multiply by π. The first step corresponds to the inside function g(t) = 1 + t, and the

second step corresponds to the outside function f(r) = πr2.

Example 1 If f(x) = x2 and g(x) = x− 2, find each of the following:

(a) f(g(3)) (b) g(f(3)) (c) f(g(x)) (d) g(f(x))

Solution (a) Since g(3) = 1, we have f(g(3)) = f(1) = 1.

(b) Since f(3) = 9, we have g(f(3)) = g(9) = 7. Notice that f(g(3)) 6= g(f(3)).
(c) f(g(x)) = f(x− 2) = (x− 2)2.

(d) g(f(x)) = g(x2) = x2 − 2. Again, notice that f(g(x)) 6= g(f(x)).
Notice that the horizontal shift in Figure 1.32 can be thought of as a composition f(g(x)) = (x−2)2.

Example 2 Express each of the following functions as a composition:

(a) h(t) = (1 + t3)27 (b) k(y) = e−y2

(c) l(y) = −(ey)2

Solution In each case think about how you would calculate a value of the function. The first stage of the

calculation gives you the inside function, and the second stage gives you the outside function.

(a) For (1+ t3)27, the first stage is cubing and adding 1, so an inside function is g(t) = 1+ t3. The

second stage is taking the 27th power, so an outside function is f(y) = y27. Then

f(g(t)) = f(1 + t3) = (1 + t3)27.

In fact, there are lots of different answers: g(t) = t3 and f(y) = (1+y)27 is another possibility.

(b) To calculate e−y2

we square y, take its negative, and then take e to that power. So if g(y) = −y2

and f(z) = ez, then we have

f(g(y)) = e−y2

.

(c) To calculate −(ey)2, we find ey, square it, and take the negative. Using the same definitions of

f and g as in part (b), the composition is

g(f(y)) = −(ey)2.

Since parts (b) and (c) give different answers, we see the order in which functions are composed

is important.

Odd and Even Functions: Symmetry

There is a certain symmetry apparent in the graphs of f(x) = x2 and g(x) = x3 in Figure 1.33. For

each point (x, x2) on the graph of f , the point (−x, x2) is also on the graph; for each point (x, x3)
on the graph of g, the point (−x,−x3) is also on the graph. The graph of f(x) = x2 is symmetric

about the y-axis, whereas the graph of g(x) = x3 is symmetric about the origin. The graph of any

polynomial involving only even powers of x has symmetry about the y-axis, while polynomials

with only odd powers of x are symmetric about the origin. Consequently, any functions with these

symmetry properties are called even and odd, respectively.
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1.3 NEW FUNCTIONS FROM OLD 23

−x x

f(x) = x2

x

Even
function

(−x, x2) (x, x2)
−x

x

g(x) = x3

x

Odd
function

(−x,−x3)

(x, x3)

Figure 1.33: Symmetry of even and odd functions

For any function f ,

f is an even function if f(−x) = f(x) for all x.

f is an odd function if f(−x) = −f(x) for all x.

For example, g(x) = ex
2

is even and h(x) = x1/3 is odd. However, many functions do not

have any symmetry and are neither even nor odd.

Inverse Functions

On August 26, 2005, the runner Kenenisa Bekele17 of Ethiopia set a world record for the 10,000-

meter race. His times, in seconds, at 2000-meter intervals are recorded in Table 1.14, where t = f(d)
is the number of seconds Bekele took to complete the first d meters of the race. For example, Bekele

ran the first 4000 meters in 629.98 seconds, so f(4000) = 629.98. The function f was useful to

athletes planning to compete with Bekele.

Let us now change our point of view and ask for distances rather than times. If we ask how

far Bekele ran during the first 629.98 seconds of his race, the answer is clearly 4000 meters. Going

backward in this way from numbers of seconds to numbers of meters gives f−1, the inverse func-

tion18 of f . We write f−1(629.98) = 4000. Thus, f−1(t) is the number of meters that Bekele ran

during the first t seconds of his race. See Table 1.15, which contains values of f−1.

The independent variable for f is the dependent variable for f−1, and vice versa. The domains

and ranges of f and f−1 are also interchanged. The domain of f is all distances d such that 0 ≤
d ≤ 10000, which is the range of f−1. The range of f is all times t, such that 0 ≤ t ≤ 1577.53,

which is the domain of f−1.

Table 1.14 Bekele’s running time

d (meters) t = f(d) (seconds)

0 0.00

2000 315.63

4000 629.98

6000 944.66

8000 1264.63

10000 1577.53

Table 1.15 Distance run by Bekele

t (seconds) d = f−1(t) (meters)

0.00 0

315.63 2000

629.98 4000

944.66 6000

1264.63 8000

1577.53 10000

Which Functions Have Inverses?

If a function has an inverse, we say it is invertible. Let’s look at a function which is not invertible.

Consider the flight of the Mercury spacecraft Freedom 7, which carried Alan Shepard, Jr. into space

17kenenisabekelle.com/, accessed January 11, 2011.
18The notation f−1 represents the inverse function, which is not the same as the reciprocal, 1/f .
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24 Chapter One A LIBRARY OF FUNCTIONS

in May 1961. Shepard was the first American to journey into space. After launch, his spacecraft rose

to an altitude of 116 miles, and then came down into the sea. The function f(t) giving the altitude

in miles t minutes after lift-off does not have an inverse. To see why not, try to decide on a value for

f−1(100), which should be the time when the altitude of the spacecraft was 100 miles. However,

there are two such times, one when the spacecraft was ascending and one when it was descending.

(See Figure 1.34.)

The reason the altitude function does not have an inverse is that the altitude has the same value

for two different times. The reason the Bekele time function did have an inverse is that each running

time, t, corresponds to a unique distance, d.

t1 t2

100

116

t (min)

d (miles)

f(t)

Figure 1.34: Two times, t1 and t2, at

which altitude of spacecraft is 100 miles

y

f(x)

f−1(y)x

Original
function

Inverse function
y = f(x)

✲

❄

✻
✛

Figure 1.35: A function which has an

inverse

Figure 1.35 suggests when an inverse exists. The original function, f , takes us from an x-value

to a y-value, as shown in Figure 1.35. Since having an inverse means there is a function going from

a y-value to an x-value, the crucial question is whether we can get back. In other words, does each

y-value correspond to a unique x-value? If so, there’s an inverse; if not, there is not. This principle

may be stated geometrically, as follows:

A function has an inverse if (and only if) its graph intersects any horizontal line at most once.

For example, the function f(x) = x2 does not have an inverse because many horizontal lines

intersect the parabola twice.

Definition of an Inverse Function

If the function f is invertible, its inverse is defined as follows:

f−1(y) = x means y = f(x).

Formulas for Inverse Functions

If a function is defined by a formula, it is sometimes possible to find a formula for the inverse

function. In Section 1.1, we looked at the snow tree cricket, whose chirp rate, C, in chirps per

minute, is approximated at the temperature, T , in degrees Fahrenheit, by the formula

C = f(T ) = 4T − 160.

So far we have used this formula to predict the chirp rate from the temperature. But it is also possible

to use this formula backward to calculate the temperature from the chirp rate.
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1.3 NEW FUNCTIONS FROM OLD 25

Example 3 Find the formula for the function giving temperature in terms of the number of cricket chirps per

minute; that is, find the inverse function f−1 such that

T = f−1(C).

Solution Since C is an increasing function, f is invertible. We know C = 4T − 160. We solve for T , giving

T =
C

4
+ 40,

so

f−1(C) =
C

4
+ 40.

Graphs of Inverse Functions

The function f(x) = x3 is increasing everywhere and so has an inverse. To find the inverse, we

solve

y = x3

for x, giving

x = y1/3.

The inverse function is

f−1(y) = y1/3

or, if we want to call the independent variable x,

f−1(x) = x1/3.

The graphs of y = x3 and y = x1/3 are shown in Figure 1.36. Notice that these graphs are the

reflections of one another about the line y = x. For example, (8, 2) is on the graph of y = x1/3

because 2 = 81/3, and (2, 8) is on the graph of y = x3 because 8 = 23. The points (8, 2) and (2, 8)
are reflections of one another about the line y = x.

In general, we have the following result.

If the x- and y-axes have the same scales, the graph of f−1 is the reflec-

tion of the graph of f about the line y = x.

−2

2 4 6 8
−2

2

4

6

8

x

y
y = x3 y = x

y = x1/3

x3

x1/3

Figure 1.36: Graphs of inverse functions, y = x3 and y = x1/3, are reflections about the line y = x
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26 Chapter One A LIBRARY OF FUNCTIONS

Exercises and Problems for Section 1.3

Exercises

For the functions f in Exercises 1–3, graph:

(a) f(x+ 2) (b) f(x− 1) (c) f(x)− 4
(d) f(x+ 1) + 3 (e) 3f(x) (f) −f(x) + 1

1.

−2 −1 0 1 2

1

2

3

4 f(x)

x

2.

−2 −1 0 1 2

1

2

3

4

f(x)

x

3.

−2 2
−2

2

4
f(x)

x

In Exercises 4–7, use Figure 1.37 to graph the functions.

−3

5
−1

2
m(t)

t

Figure 1.37

4. n(t) = m(t) + 2 5. p(t) = m(t− 1)

6. k(t) = m(t+ 1.5)

7. w(t) = m(t− 0.5) − 2.5

For the functions f and g in Exercises 8–11, find

(a) f(g(1)) (b) g(f(1)) (c) f(g(x))
(d) g(f(x)) (e) f(t)g(t)

8. f(x) = x2, g(x) = x+ 1

9. f(x) =
√
x+ 4, g(x) = x2

10. f(x) = ex, g(x) = x2

11. f(x) = 1/x, g(x) = 3x+ 4

12. For g(x) = x2 + 2x+ 3, find and simplify:

(a) g(2 + h) (b) g(2)

(c) g(2 + h)− g(2)

13. If f(x) = x2 + 1, find and simplify:

(a) f(t+ 1) (b) f(t2 + 1) (c) f(2)

(d) 2f(t) (e) (f(t))2 + 1

Simplify the quantities in Exercises 14–17 using m(z) = z2.

14. m(z + 1)−m(z) 15. m(z + h)−m(z)

16. m(z)−m(z − h) 17. m(z+h)−m(z−h)

18. Let p be the price of an item and q be the number of items

sold at that price, where q = f(p). What do the following

quantities mean in terms of prices and quantities sold?

(a) f(25) (b) f−1(30)

19. Let C = f(A) be the cost, in dollars, of building a store

of area A square feet. In terms of cost and square feet,

what do the following quantities represent?

(a) f(10,000) (b) f−1(20,000)

20. Let f(x) be the temperature (◦F) when the column of

mercury in a particular thermometer is x inches long.

What is the meaning of f−1(75) in practical terms?

21. (a) Write an equation for a graph obtained by vertically

stretching the graph of y = x2 by a factor of 2, fol-

lowed by a vertical upward shift of 1 unit. Sketch it.

(b) What is the equation if the order of the transfor-

mations (stretching and shifting) in part (a) is inter-

changed?

(c) Are the two graphs the same? Explain the effect of

reversing the order of transformations.

22. Use Figure 1.38 to graph each of the following. Label

any intercepts or asymptotes that can be determined.

(a) y = f(x) + 3 (b) y = 2f(x)

(c) y = f(x+ 4) (d) y = 4− f(x)

−5 −3 −1 2 5

−1

1

2

x

y

Figure 1.38

For Exercises 23–24, decide if the function y = f(x) is in-

vertible.

23.

f

y

x

24.

x

y

f
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1.3 NEW FUNCTIONS FROM OLD 27

For Exercises 25–27, use a graph of the function to decide

whether or not it is invertible.

25. f(x) = x2 + 3x+ 2 26. f(x) = x3− 5x+10

27. f(x) = x3+5x+10

Are the functions in Exercises 28–35 even, odd, or neither?

28. f(x) = x6 + x3 + 1 29. f(x) = x3 + x2 + x

30. f(x) = x4 − x2 + 3 31. f(x) = x3 + 1

32. f(x) = 2x 33. f(x) = ex
2
−1

34. f(x) = x(x2 − 1) 35. f(x) = ex − x

Problems

For Problems 36–39, determine functions f and g such that

h(x) = f(g(x)). [Note: There is more than one correct an-

swer. Do not choose f(x) = x or g(x) = x.]

36. h(x) = (x+ 1)3 37. h(x) = x3 + 1

38. h(x) =
√
x2 + 4 39. h(x) = e2x

Find possible formulas for the graphs in Problems 40–41 us-

ing shifts of x2 or x3.

40.

x

y

(−1, 3)

41.

x

y

(2,−1)

42. (a) Use Figure 1.39 to estimate f−1(2).
(b) Sketch a graph of f−1 on the same axes.

−4 4

−4

4

f(x)

x

y

Figure 1.39

43. Write a table of values for f−1, where f is as given be-

low. The domain of f is the integers from 1 to 7. State

the domain of f−1.

x 1 2 3 4 5 6 7

f(x) 3 −7 19 4 178 2 1

For Problems 44–47, decide if the function f is invertible.

44. f(d) is the total number of gallons of fuel an airplane has

used by the end of d minutes of a particular flight.

45. f(t) is the number of customers in Macy’s department

store at t minutes past noon on December 18, 2008.

46. f(n) is the number of students in your calculus class

whose birthday is on the nth day of the year.

47. f(w) is the cost of mailing a letter weighing w grams.

In Problems 48–51 the functions r = f(t) and V = g(r) give

the radius and the volume of a commercial hot air balloon be-

ing inflated for testing. The variable t is in minutes, r is in

feet, and V is in cubic feet. The inflation begins at t = 0. In

each case, give a mathematical expression that represents the

given statement.

48. The volume of the balloon t minutes after inflation be-

gan.

49. The volume of the balloon if its radius were twice as

big.

50. The time that has elapsed when the radius of the balloon

is 30 feet.

51. The time that has elapsed when the volume of the balloon

is 10,000 cubic feet.

In Problems 52–55, use Figure 1.40 to estimate the function

value or explain why it cannot be done.

50

100
u(x)

x
50

100

v(x)

x

Figure 1.40

52. u(v(10)) 53. u(v(40))

54. v(u(10)) 55. v(u(40))
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28 Chapter One A LIBRARY OF FUNCTIONS

56. Figure 1.41 shows f(t), the number (in millions) of mo-

tor vehicles registered19 in the world in the year t.

(a) Is f invertible? Explain.

(b) What is the meaning of f−1(400) in practical terms?

Evaluate f−1(400).
(c) Sketch the graph of f−1.

’65 ’70 ’75 ’80 ’85 ’90 ’95 ’00 ’05 ’10

200

400

600

800

1000

(year)

(millions)

Figure 1.41

For Problems 57–62, use the graphs in Figure 1.42.

−3 3

−3

3

x

f(x)

−3 3

−3

3

x

g(x)

Figure 1.42

57. Estimate f(g(1)). 58. Estimate g(f(2)).

59. Estimate f(f(1)). 60. Graph f(g(x)).

61. Graph g(f(x)). 62. Graph f(f(x)).

63. Figure 1.43 is a graph of the function f(t). Here f(t) is

the depth in meters below the Atlantic Ocean floor where

t million-year-old rock can be found.20

(a) Evaluate f(15), and say what it means in practical

terms.

(b) Is f invertible? Explain.

(c) Evaluate f−1(120), and say what it means in prac-

tical terms.

(d) Sketch a graph of f−1.

403530252015105

Time (millions of years)

Depth
below
ocean

floor
(m)

140

120

100

60

40

20

0

80

Figure 1.43

64. A tree of height y meters has, on average, B branches,

where B = y−1. Each branch has, on average, n leaves,

where n = 2B2 −B. Find the average number of leaves

of a tree as a function of height.

65. A spherical balloon is growing with radius r = 3t + 1,

in centimeters, for time t in seconds. Find the volume of

the balloon at 3 seconds.

66. The cost of producing q articles is given by the function

C = f(q) = 100 + 2q.

(a) Find a formula for the inverse function.

(b) Explain in practical terms what the inverse function

tells you.

67. How does the graph of Q = S(1 − e−kt) in Example 4

on page 16 relate to the graph of the exponential decay

function, y = Se−kt?

68. Complete the following table with values for the func-

tions f , g, and h, given that:

(a) f is an even function.

(b) g is an odd function.

(c) h is the composition h(x) = g(f(x)).

x f(x) g(x) h(x)

−3 0 0

−2 2 2

−1 2 2

0 0 0

1

2

3

19www.earth-policy.org, accessed June 5, 2011. In 2000, about 30% of the registered vehicles were in the US.
20Data of Dr. Murlene Clark based on core samples drilled by the research ship Glomar Challenger, taken from Initial

Reports of the Deep Sea Drilling Project.
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1.4 LOGARITHMIC FUNCTIONS 29

Strengthen Your Understanding

In Problems 69–71, explain what is wrong with the statement.

69. The graph of f(x) = −(x+ 1)3 is the graph of g(x) =
−x3 shifted right by 1 unit.

70. f(x) = 3x+5 and g(x) = −3x−5 are inverse functions

of each other.

71. The inverse of f(x) = x is f−1(x) = 1/x.

In Problems 72–75, give an example of:

72. An invertible function whose graph contains the point

(0, 3).

73. An even function whose graph does not contain the point

(0, 0).

74. An increasing function f(x) whose values are greater

than those of its inverse function f−1(x) for x > 0.

75. Two functions f(x) and g(x) such that moving the graph

of f to the left 2 units gives the graph of g and moving

the graph of f up 3 also gives the graph of g.

Are the statements in Problems 76–83 true or false? Give an

explanation for your answer.

76. The graph of f(x) = 100(10x) is a horizontal shift of

the graph of g(x) = 10x.

77. If f is an increasing function, then f−1 is an increasing

function.

78. If a function is even, then it does not have an inverse.

79. If a function is odd, then it does not have an inverse.

80. The function f(x) = e−x2

is decreasing for all x.

81. If g(x) is an even function then f(g(x)) is even for every

function f(x).

82. If f(x) is an even function then f(g(x)) is even for every

function g(x).

83. There is a function which is both even and odd.

Suppose f is an increasing function and g is a decreasing

function. In Problems 84–87, give an example for f and g
for which the statement is true, or say why such an example is

impossible.

84. f(x) + g(x) is decreasing for all x.

85. f(x)− g(x) is decreasing for all x.

86. f(x)g(x) is decreasing for all x.

87. f(g(x)) is increasing for all x.

1.4 LOGARITHMIC FUNCTIONS

In Section 1.2, we approximated the population of Burkina Faso (in millions) by the function

P = f(t) = 12.853(1.034)t,

where t is the number of years since 2003. Now suppose that instead of calculating the population

at time t, we ask when the population will reach 20 million. We want to find the value of t for which

20 = f(t) = 12.853(1.034)t.

We use logarithms to solve for a variable in an exponent.

Logarithms to Base 10 and to Base e

We define the logarithm function, log10 x, to be the inverse of the exponential function, 10x, as

follows:

The logarithm to base 10 of x, written log10 x, is the power of 10 we need to get x. In other

words,

log10 x = c means 10c = x.

We often write log x in place of log10 x.

The other frequently used base is e. The logarithm to base e is called the natural logarithm of

x, written lnx and defined to be the inverse function of ex, as follows:

The natural logarithm of x, written lnx, is the power of e needed to get x. In other words,

lnx = c means ec = x.
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30 Chapter One A LIBRARY OF FUNCTIONS

Values of log x are in Table 1.16. Because no power of 10 gives 0, log 0 is undefined. The graph

of y = log x is shown in Figure 1.44. The domain of y = log x is positive real numbers; the range is

all real numbers. In contrast, the inverse function y = 10x has domain all real numbers and range all

positive real numbers. The graph of y = log x has a vertical asymptote at x = 0, whereas y = 10x

has a horizontal asymptote at y = 0.

One big difference between y = 10x and y = log x is that the exponential function grows

extremely quickly whereas the log function grows extremely slowly. However, log x does go to

infinity, albeit slowly, as x increases. Since y = log x and y = 10x are inverse functions, the graphs

of the two functions are reflections of one another about the line y = x, provided the scales along

the x- and y-axes are equal.

Table 1.16 Values for log x and 10x

x log x

0 undefined

1 0

2 0.3

3 0.5

4 0.6
...

...

10 1

x 10x

0 1

1 10

2 100

3 103

4 104

...
...

10 1010

2 4 6 8 10

2

4

6

8

10

x

y
y = 10x

y = log x

(1, 10)

(1, 0)

(10, 1)
(0, 1) ✲

Exponential: grows quickly

Log: grows slowly

✻

✛

❄

Figure 1.44: Graphs of log x and 10x

The graph of y = lnx in Figure 1.45 has roughly the same shape as the graph of y = log x. The

x-intercept is x = 1, since ln 1 = 0.The graph of y = lnx also climbs very slowly as x increases.

Both graphs, y = log x and y = lnx, have vertical asymptotes at x = 0.

1 10

1

x

y

y = ln x

Figure 1.45: Graph of the natural logarithm

The following properties of logarithms may be deduced from the properties of exponents:

Properties of Logarithms

Note that log x and lnx are not defined when x is negative or 0.

1. log(AB) = logA+ logB

2. log

(
A

B

)

= logA− logB

3. log (Ap) = p logA

4. log (10x) = x

5. 10log x = x

1. ln (AB) = lnA+ lnB

2. ln

(
A

B

)

= lnA− lnB

3. ln (Ap) = p lnA

4. ln ex = x

5. elnx = x

In addition, log 1 = 0 because 100 = 1, and ln 1 = 0 because e0 = 1.
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1.4 LOGARITHMIC FUNCTIONS 31

Solving Equations Using Logarithms

Logs are frequently useful when we have to solve for unknown exponents, as in the next examples.

Example 1 Find t such that 2t = 7.

Solution First, notice that we expect t to be between 2 and 3 (because 22 = 4 and 23 = 8). To calculate t, we

take logs to base 10 of both sides. (Natural logs could also be used.)

log(2t) = log 7.

Then use the third property of logs, which says log(2t) = t log 2, and get:

t log 2 = log 7.

Using a calculator to find the logs gives

t =
log 7

log 2
≈ 2.81.

Example 2 Find when the population of Burkina Faso reaches 20 million by solving 20 = 12.853(1.034)t.

Solution Dividing both sides of the equation by 12.853, we get

20

12.853
= (1.034)t.

Now take logs of both sides:

log

(
20

12.853

)

= log(1.034t).

Using the fact that log(At) = t logA, we get

log

(
20

12.853

)

= t log(1.034).

Solving this equation using a calculator to find the logs, we get

t =
log(20/12.853)

log(1.034)
= 13.22 years

which is between t = 13 and t = 14. This value of t corresponds to the year 2016.

Example 3 Traffic pollution is harmful to school-age children. The concentration of carbon monoxide, CO, in

the air near a busy road is a function of distance from the road. The concentration decays exponen-

tially at a continuous rate of 3.3% per meter.21 At what distance from the road is the concentration

of CO half what it is on the road?

Solution If C0 is the concentration of CO on the road, then the concentration x meters from the road is

C = C0e
−0.033x.

We want to find the value of x making C = C0/2, that is,

C0e
−0.033x =

C0

2
.

Dividing by C0 and then taking natural logs yields

ln
(
e−0.033x

)
= −0.033x = ln

(
1

2

)

= −0.6931,

so

x = 21 meters.

At 21 meters from the road the concentration of CO in the air is half the concentration on the road.

21Rickwood, P. and Knight, D. (2009). “The health impacts of local traffic pollution on primary school age children.” State

of Australian Cities 2009 Conference Proceedings.
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32 Chapter One A LIBRARY OF FUNCTIONS

In Example 3 the decay rate was given. However, in many situations where we expect to find

exponential growth or decay, the rate is not given. To find it, we must know the quantity at two

different times and then solve for the growth or decay rate, as in the next example.

Example 4 The population of Mexico was 99.9 million in 2000 and 113.4 million in 2010.22 Assuming it

increases exponentially, find a formula for the population of Mexico as a function of time.

Solution If we measure the population, P , in millions and time, t, in years since 2000, we can say

P = P0e
kt = 99.9ekt,

where P0 = 99.9 is the initial value of P . We find k by using the fact that P = 113.4 when t = 10,

so

113.4 = 99.9ek·10.

To find k, we divide both sides by 99.9, giving

113.4

99.9
= 1.135 = e10k.

Now take natural logs of both sides:

ln(1.135) = ln(e10k).

Using a calculator and the fact that ln(e10k) = 10k, this becomes

0.127 = 10k.

So

k = 0.0127,

and therefore

P = 99.9e0.0127t.

Since k = 0.0127 = 1.27%, the population of Mexico was growing at a continuous rate of 1.27%

per year.

In Example 4 we chose to use e for the base of the exponential function representing Mexico’s

population, making clear that the continuous growth rate was 1.27%. If we had wanted to emphasize

the annual growth rate, we could have expressed the exponential function in the form P = P0a
t.

Example 5 Give a formula for the inverse of the following function (that is, solve for t in terms of P ):

P = f(t) = 12.853(1.034)t.

Solution We want a formula expressing t as a function of P . Take logs:

logP = log(12.853(1.034)t).

Since log(AB) = logA+ logB, we have

logP = log 12.853 + log((1.034)t).

Now use log(At) = t logA:

logP = log 12.853 + t log 1.034.

Solve for t in two steps, using a calculator at the final stage:

t log 1.034 = logP − log 12.853

t =
logP

log 1.034
−

log 12.853

log 1.034
= 68.868 logP − 76.375.

22http://data.worldbank.org/country/mexico. Accessed January 14, 2012.
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1.4 LOGARITHMIC FUNCTIONS 33

Thus,

f−1(P ) = 68.868 logP − 76.375.

Note that

f−1(20) = 68.868(log 20)− 76.375 = 13.22,

which agrees with the result of Example 2.

Exercises and Problems for Section 1.4

Exercises

Simplify the expressions in Exercises 1–6 completely.

1. eln(1/2) 2. 10log(AB)

3. 5eln(A
2) 4. ln(e2AB)

5. ln (1/e) + ln(AB) 6. 2 ln
(
eA
)
+ 3 lnBe

For Exercises 7–18, solve for x using logs.

7. 3x = 11 8. 17x = 2

9. 20 = 50(1.04)x 10. 4 · 3x = 7 · 5x

11. 7 = 5e0.2x 12. 2x = ex+1

13. 50 = 600e−0.4x 14. 2e3x = 4e5x

15. 7x+2 = e17x 16. 10x+3 = 5e7−x

17. 2x− 1 = elnx2

18. 4e2x−3 − 5 = e

For Exercises 19–24, solve for t. Assume a and b are positive

constants and k is nonzero.

19. a = bt 20. P = P0 a
t

21. Q = Q0 a
nt 22. P0 a

t = Q0 b
t

23. a = bet 24. P = P0 e
kt

In Exercises 25–28, put the functions in the form P = P0e
kt.

25. P = 15(1.5)t 26. P = 10(1.7)t

27. P = 174(0.9)t 28. P = 4(0.55)t

Find the inverse function in Exercises 29–31.

29. p(t) = (1.04)t 30. f(t) = 50e0.1t

31. f(t) = 1 + ln t

Problems

32. The population of a region is growing exponentially.

There were 40,000,000 people in 2000 (t = 0) and

48,000,000 in 2010. Find an expression for the popula-

tion at any time t, in years. What population would you

predict for the year 2020? What is the doubling time?

33. One hundred kilograms of a radioactive substance decay

to 40 kg in 10 years. How much remains after 20 years?

34. A culture of bacteria originally numbers 500. After 2
hours there are 1500 bacteria in the culture. Assuming

exponential growth, how many are there after 6 hours?

35. The population of the US was 281.4 million in 2000 and

308.7 million in 2010.23 Assuming exponential growth,

(a) In what year is the population expected to go over

350 million?

(b) What population is predicted for the 2020 census?

36. The concentration of the car exhaust fume nitrous oxide,

NO2, in the air near a busy road is a function of distance

from the road. The concentration decays exponentially at

a continuous rate of 2.54% per meter.24 At what distance

from the road is the concentration of NO2 half what it is

on the road?

37. For children and adults with diseases such as asthma, the

number of respiratory deaths per year increases by 0.33%
when pollution particles increase by a microgram per cu-

bic meter of air.25

(a) Write a formula for the number of respiratory deaths

per year as a function of quantity of pollution in the

air. (Let Q0 be the number of deaths per year with

no pollution.)

(b) What quantity of air pollution results in twice as

many respiratory deaths per year as there would be

without pollution?

23http://2010.census.gov/2010census/. Accessed April 17, 2011.
24Rickwood, P. and Knight, D. (2009). “The health impacts of local traffic pollution on primary school age children.” State

of Australian Cities 2009 Conference Proceedings.
25Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J., and

Smith, S. C. (2004). “Air pollution and cardiovascular disease.” Circulation, 109(21):2655267.
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34 Chapter One A LIBRARY OF FUNCTIONS

38. The number of alternative fuel vehicles26 running on

E85, fuel that is up to 85% plant-derived ethanol, in-

creased exponentially in the US between 2003 and 2008.

(a) Use this information to complete the missing table

values.

(b) How many E85-powered vehicles were there in the

US in 2003?

(c) By what percent did the number of E85-powered ve-

hicles grow from 2004 to 2008?

Year 2004 2005 2006 2007 2008

Number of E85 vehicles 211,800 ? ? ? 450,327

39. At time t hours after taking the cough suppressant hy-

drocodone bitartrate, the amount, A, in mg, remaining in

the body is given by A = 10(0.82)t.

(a) What was the initial amount taken?

(b) What percent of the drug leaves the body each hour?

(c) How much of the drug is left in the body 6 hours

after the dose is administered?

(d) How long is it until only 1 mg of the drug remains

in the body?

40. A cup of coffee contains 100 mg of caffeine, which

leaves the body at a continuous rate of 17% per hour.

(a) Write a formula for the amount, A mg, of caffeine in

the body t hours after drinking a cup of coffee.

(b) Graph the function from part (a). Use the graph to

estimate the half-life of caffeine.

(c) Use logarithms to find the half-life of caffeine.

41. The exponential function y(x) = Ceαx satisfies the con-

ditions y(0) = 2 and y(1) = 1. Find the constants C and

α. What is y(2)?

42. Without a calculator or computer, match the functions ex,

ln x, x2, and x1/2 to their graphs in Figure 1.46.

x

AB

C
D

Figure 1.46

43. With time, t, in years since the start of 1980, textbook

prices have increased at 6.7% per year while inflation has

been 3.3% per year.27 Assume both rates are continuous

growth rates.

(a) Find a formula for B(t), the price of a textbook in

year t if it cost $B0 in 1980.

(b) Find a formula for P (t), the price of an item in year

t if it cost $P0 in 1980 and its price rose according

to inflation.

(c) A textbook cost $50 in 1980. When is its price pre-

dicted to be double the price that would have re-

sulted from inflation alone?

44. In November 2010, a “tiger summit” was held in St.

Petersburg, Russia.28 In 1900, there were 100,000 wild

tigers worldwide; in 2010 the number was 3200.

(a) Assuming the tiger population has decreased expo-

nentially, find a formula for f(t), the number of wild

tigers t years since 1900.

(b) Between 2000 and 2010, the number of wild tigers

decreased by 40%. Is this percentage larger or

smaller than the decrease in the tiger population pre-

dicted by your answer to part (a)?

45. In 2011, the populations of China and India were ap-

proximately 1.34 and 1.19 billion people29, respectively.

However, due to central control the annual population

growth rate of China was 0.4% while the population of

India was growing by 1.37% each year. If these growth

rates remain constant, when will the population of India

exceed that of China?

46. The third-quarter revenue of Apple R© went from $3.68
billion30 in 2005 to $15.68 billion31 in 2010. Find an ex-

ponential function to model the revenue as a function of

years since 2005. What is the continuous percent growth

rate, per year, of sales?

47. The world population was 6.9 billion at the end of 2010

and is predicted to reach 9 billion by the end of 2050.32

(a) Assuming the population is growing exponentially,

what is the continuous growth rate per year?

(b) The United Nations celebrated the “Day of 5 Bil-

lion” on July 11, 1987, and the “Day of 6 Billion”

on October 12, 1999. Using the growth rate in part

(a), when is the “Day of 7 Billion” predicted to be?

26http://www.eia.doe.gov/aer/renew.html
27Data from “Textbooks headed for ash heap of history”, http://educationtechnews.com, Vol 5, 2010.
28“Tigers would be extinct in Russia if unprotected,” Yahoo! News, Nov. 21, 2010.
29http://www.indexmundi.com/. Accessed April 17, 2011.
30http://www.apple.com/pr/library/2005/oct/11results.html. Accessed April 27, 2011.
31http://www.apple.com/pr/library/2010/01/25results.html. Accessed April 27, 2011.
32“Reviewing the Bidding on the Climate Files”, in About Dot Earth, New York Times, Nov. 19, 2010.
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1.4 LOGARITHMIC FUNCTIONS 35

48. In the early 1920s, Germany had tremendously high in-

flation, called hyperinflation. Photographs of the time

show people going to the store with wheelbarrows full

of money. If a loaf of bread cost 1/4 marks in 1919 and

2,400,000 marks in 1922, what was the average yearly

inflation rate between 1919 and 1922?

49. Different isotopes (versions) of the same element can

have very different half-lives. With t in years, the decay

of plutonium-240 is described by the formula

Q = Q0e
−0.00011t,

whereas the decay of plutonium-242 is described by

Q = Q0e
−0.0000018t .

Find the half-lives of plutonium-240 and plutonium-242.

50. The size of an exponentially growing bacteria colony

doubles in 5 hours. How long will it take for the num-

ber of bacteria to triple?

51. Air pressure, P , decreases exponentially with height, h,

above sea level. If P0 is the air pressure at sea level and

h is in meters, then

P = P0e
−0.00012h .

(a) At the top of Mount McKinley, height 6194 meters

(about 20,320 feet), what is the air pressure, as a per-

cent of the pressure at sea level?

(b) The maximum cruising altitude of an ordinary com-

mercial jet is around 12,000 meters (about 39,000

feet). At that height, what is the air pressure, as a

percent of the sea level value?

52. Find the equation of the line l in Figure 1.47.

log 2
x

l
f(x) = 10x

Figure 1.47

53. In 2010, there were about 246 million vehicles (cars

and trucks) and about 308.7 million people in the US.33

The number of vehicles grew 15.5% over the previous

decade, while the population has been growing at 9.7%
per decade. If the growth rates remain constant, when

will there be, on average, one vehicle per person?

54. A picture supposedly painted by Vermeer (1632–1675)

contains 99.5% of its carbon-14 (half-life 5730 years).

From this information decide whether the picture is a

fake. Explain your reasoning.

55. Is there a difference between ln[ln(x)] and ln2(x)?
[Note: ln2(x) is another way of writing (lnx)2.]

56. If h(x) = ln(x + a), where a > 0, what is the effect of

increasing a on

(a) The y-intercept? (b) The x-intercept?

57. If h(x) = ln(x + a), where a > 0, what is the effect of

increasing a on the vertical asymptote?

58. If g(x) = ln(ax+2), where a 6= 0, what is the effect of

increasing a on

(a) The y-intercept? (b) The x-intercept?

59. If f(x) = a ln(x+ 2), what is the effect of increasing a
on the vertical asymptote?

60. If g(x) = ln(ax+2), where a 6= 0, what is the effect of

increasing a on the vertical asymptote?

Strengthen Your Understanding

In Problems 61–62, explain what is wrong with the statement.

61. The function − log |x| is odd.

62. For all x > 0, the value of ln(100x) is 100 times larger

than ln x.

In Problems 63–64, give an example of:

63. A function f(x) such that ln(f(x)) is only defined for

x < 0.

64. A function with a vertical asymptote at x = 3 and de-

fined only for x > 3.

Are the statements in Problems 65–68 true or false? Give an

explanation for your answer.

65. The graph of f(x) = ln x is concave down.

66. The graph of g(x) = log(x − 1) crosses the x-axis at

x = 1.

67. The inverse function of y = log x is y = 1/ log x.

68. If a and b are positive constants, then y = ln(ax+b) has

no vertical asymptote.

33http://www.autoblog.com/2010/01/04/report-number-of-cars-in-the-u-s-dropped-by-four-million-in-20/ and

http://2010.census.gov/news/releases/operations/cb10-cn93.html. Accessed February 2012.
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36 Chapter One A LIBRARY OF FUNCTIONS

1.5 TRIGONOMETRIC FUNCTIONS

Trigonometry originated as part of the study of triangles. The name tri-gon-o-metry means the

measurement of three-cornered figures, and the first definitions of the trigonometric functions were

in terms of triangles. However, the trigonometric functions can also be defined using the unit circle,

a definition that makes them periodic, or repeating. Many naturally occurring processes are also

periodic. The water level in a tidal basin, the blood pressure in a heart, an alternating current, and

the position of the air molecules transmitting a musical note all fluctuate regularly. Such phenomena

can be represented by trigonometric functions.

Radians

There are two commonly used ways to represent the input of the trigonometric functions: radians

and degrees. The formulas of calculus, as you will see, are neater in radians than in degrees.

An angle of 1 radian is defined to be the angle at the center of a unit circle which cuts off an

arc of length 1, measured counterclockwise. (See Figure 1.48(a).) A unit circle has radius 1.

An angle of 2 radians cuts off an arc of length 2 on a unit circle. A negative angle, such as −1/2
radians, cuts off an arc of length 1/2, but measured clockwise. (See Figure 1.48(b).)

(a)

1 radian

Arc length = 1
1

⑥
(b) Arc length = 2

− 1
2

rad
Arc length = 1

2

1
2 radians

✙

☛

Figure 1.48: Radians defined using unit circle

It is useful to think of angles as rotations, since then we can make sense of angles larger than

360◦; for example, an angle of 720◦ represents two complete rotations counterclockwise. Since one

full rotation of 360◦ cuts off an arc of length 2π, the circumference of the unit circle, it follows that

360◦ = 2π radians, so 180◦ = π radians.

In other words, 1 radian = 180◦/π, so one radian is about 60◦. The word radians is often dropped,

so if an angle or rotation is referred to without units, it is understood to be in radians.

Radians are useful for computing the length of an arc in any circle. If the circle has radius r and

the arc cuts off an angle θ, as in Figure 1.49, then we have the following relation:

Arc length = s = rθ.
s

r

θ

Figure 1.49: Arc length of a sector of a circle
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1.5 TRIGONOMETRIC FUNCTIONS 37

The Sine and Cosine Functions

The two basic trigonometric functions—the sine and cosine—are defined using a unit circle. In

Figure 1.50, an angle of t radians is measured counterclockwise around the circle from the point

(1, 0). If P has coordinates (x, y), we define

cos t = x and sin t = y.

We assume that the angles are always in radians unless specified otherwise.

Since the equation of the unit circle is x2 + y2 = 1, writing cos2 t for (cos t)2, we have the

identity

cos2 t+ sin2 t = 1.

As t increases and P moves around the circle, the values of sin t and cos t oscillate between 1 and

−1, and eventually repeat as P moves through points where it has been before. If t is negative, the

angle is measured clockwise around the circle.

Amplitude, Period, and Phase

The graphs of sine and cosine are shown in Figure 1.51. Notice that sine is an odd function, and

cosine is even. The maximum and minimum values of sine and cosine are +1 and −1, because those

are the maximum and minimum values of y and x on the unit circle. After the point P has moved

around the complete circle once, the values of cos t and sin t start to repeat; we say the functions

are periodic.

For any periodic function of time, the

• Amplitude is half the distance between the maximum and minimum values (if it exists).

• Period is the smallest time needed for the function to execute one complete cycle.

The amplitude of cos t and sin t is 1, and the period is 2π. Why 2π? Because that’s the value of

t when the point P has gone exactly once around the circle. (Remember that 360◦ = 2π radians.)

✻

❄

y

✲✛x (1, 0)

(0, 1)
P x = cos t

y = sin t

t

Figure 1.50: The definitions of sin t and

cos t

−3π −2π −π π 2π 3π

−1

1
sin t ✻

❄

Amplitude = 1

✲✛ Period = 2π

cos t

t

Figure 1.51: Graphs of cos t and sin t

In Figure 1.51, we see that the sine and cosine graphs are exactly the same shape, only shifted

horizontally. Since the cosine graph is the sine graph shifted π/2 to the left,

cos t = sin(t+ π/2).

Equivalently, the sine graph is the cosine graph shifted π/2 to the right, so

sin t = cos(t− π/2).
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38 Chapter One A LIBRARY OF FUNCTIONS

We say that the phase difference or phase shift between sin t and cos t is π/2.

Functions whose graphs are the shape of a sine or cosine curve are called sinusoidal functions.

To describe arbitrary amplitudes and periods of sinusoidal functions, we use functions of the

form

f(t) = A sin(Bt) and g(t) = A cos(Bt),

where |A| is the amplitude and 2π/|B| is the period.

The graph of a sinusoidal function is shifted horizontally by a distance |h| when t is replaced

by t− h or t+ h.

Functions of the form f(t) = A sin(Bt) + C and g(t) = A cos(Bt) + C have graphs which

are shifted vertically by C and oscillate about this value.

Example 1 Find and show on a graph the amplitude and period of the functions

(a) y = 5 sin(2t) (b) y = −5 sin

(
t

2

)

(c) y = 1 + 2 sin t

Solution (a) From Figure 1.52, you can see that the amplitude of y = 5 sin(2t) is 5 because the factor of 5

stretches the oscillations up to 5 and down to −5. The period of y = sin(2t) is π, because when

t changes from 0 to π, the quantity 2t changes from 0 to 2π, so the sine function goes through

one complete oscillation.

(b) Figure 1.53 shows that the amplitude of y = −5 sin (t/2) is again 5, because the negative sign

reflects the oscillations in the t-axis, but does not change how far up or down they go. The period

of y = −5 sin (t/2) is 4π because when t changes from 0 to 4π, the quantity t/2 changes from

0 to 2π, so the sine function goes through one complete oscillation.

(c) The 1 shifts the graph y = 2 sin t up by 1. Since y = 2 sin t has an amplitude of 2 and a period

of 2π, the graph of y = 1 + 2 sin t goes up to 3 and down to −1, and has a period of 2π. (See

Figure 1.54.) Thus, y = 1 + 2 sin t also has amplitude 2.

−π π

2π

5

t

y
y = 5 sin 2t

✻

❄

Amplitude

✲✛Period

Figure 1.52: Amplitude = 5,

period = π

−π 2π 4π

5
y = −5 sin(t/2)

t

y

✻

❄

Amplitude

✲✛ Period

Figure 1.53: Amplitude = 5,

period = 4π

π 2π
−1

1

3

t

y
y = 1 + 2 sin t

✻

❄

Amplitude

✲✛ Period

Figure 1.54: Amplitude = 2, period = 2π

Example 2 Find possible formulas for the following sinusoidal functions.

−6π 12π6π

g(t)

−3

3

t

(a)

−1 1 2 3 4

−2

f(t)2

t

(b)

−5π π 7π 13π

−3

3

t

h(t)(c)
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1.5 TRIGONOMETRIC FUNCTIONS 39

Solution (a) This function looks like a sine function with amplitude 3, so g(t) = 3 sin(Bt). Since the func-

tion executes one full oscillation between t = 0 and t = 12π, when t changes by 12π, the quan-

tity Bt changes by 2π. This means B · 12π = 2π, so B = 1/6. Therefore, g(t) = 3 sin(t/6)
has the graph shown.

(b) This function looks like an upside-down cosine function with amplitude 2, so f(t) = −2 cos(Bt).
The function completes one oscillation between t = 0 and t = 4. Thus, when t changes by 4,

the quantity Bt changes by 2π, so B · 4 = 2π, or B = π/2. Therefore, f(t) = −2 cos(πt/2)
has the graph shown.

(c) This function looks like the function g(t) in part (a), but shifted a distance of π to the right.

Since g(t) = 3 sin(t/6), we replace t by (t− π) to obtain h(t) = 3 sin[(t− π)/6].

Example 3 On July 1, 2007, high tide in Boston was at midnight. The water level at high tide was 9.9 feet; later,

at low tide, it was 0.1 feet. Assuming the next high tide is at exactly 12 noon and that the height of

the water is given by a sine or cosine curve, find a formula for the water level in Boston as a function

of time.

Solution Let y be the water level in feet, and let t be the time measured in hours from midnight. The os-

cillations have amplitude 4.9 feet (= (9.9 − 0.1)/2) and period 12, so 12B = 2π and B = π/6.

Since the water is highest at midnight, when t = 0, the oscillations are best represented by a cosine

function. (See Figure 1.55.) We can say

Height above average = 4.9 cos
(π

6
t
)

.

Since the average water level was 5 feet (= (9.9 + 0.1)/2), we shift the cosine up by adding 5:

y = 5 + 4.9 cos
(π

6
t
)

.

12 mid. 6 am 12 noon

12

6 pm 12 mid.

24

5

9.9

t

y

y = 5 + 4.9 cos(π
6
t)

Figure 1.55: Function approximating the tide in Boston on July 1, 2007

Example 4 Of course, there’s something wrong with the assumption in Example 3 that the next high tide is

at noon. If so, the high tide would always be at noon or midnight, instead of progressing slowly

through the day, as in fact it does. The interval between successive high tides actually averages

about 12 hours 24 minutes. Using this, give a more accurate formula for the height of the water as a

function of time.

Solution The period is 12 hours 24 minutes = 12.4 hours, so B = 2π/12.4, giving

y = 5 + 4.9 cos

(
2π

12.4
t

)

= 5 + 4.9 cos(0.507t).

Example 5 Use the information from Example 4 to write a formula for the water level in Boston on a day when

the high tide is at 2 pm.
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40 Chapter One A LIBRARY OF FUNCTIONS

Solution When the high tide is at midnight,

y = 5 + 4.9 cos(0.507t).

Since 2 pm is 14 hours after midnight, we replace t by (t− 14). Therefore, on a day when the high

tide is at 2 pm,

y = 5 + 4.9 cos(0.507(t− 14)).

The Tangent Function

If t is any number with cos t 6= 0, we define the tangent function as follows

tan t =
sin t

cos t
.

Figure 1.50 on page 37 shows the geometrical meaning of the tangent function: tan t is the

slope of the line through the origin (0, 0) and the point P = (cos t, sin t) on the unit circle.

The tangent function is undefined wherever cos t = 0, namely, at t = ±π/2, ±3π/2, . . . , and it

has a vertical asymptote at each of these points. The function tan t is positive where sin t and cos t
have the same sign. The graph of the tangent is shown in Figure 1.56.

−π π

−10

10

t

tan t

✲✛ Period

Figure 1.56: The tangent function

−π π

−10

10

t

3 tan t

tan t

✲

✲

✲✛ Period

Figure 1.57: Multiple of tangent

The tangent function has period π, because it repeats every π units. Does it make sense to talk

about the amplitude of the tangent function? Not if we’re thinking of the amplitude as a measure of

the size of the oscillation, because the tangent becomes infinitely large near each vertical asymptote.

We can still multiply the tangent by a constant, but that constant no longer represents an amplitude.

(See Figure 1.57.)

The Inverse Trigonometric Functions

On occasion, you may need to find a number with a given sine. For example, you might want to find

x such that

sinx = 0

or such that

sinx = 0.3.

The first of these equations has solutions x = 0, ±π, ±2π, . . . . The second equation also has

infinitely many solutions. Using a calculator and a graph, we get

x ≈ 0.305, 2.84, 0.305± 2π, 2.84± 2π, . . . .
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1.5 TRIGONOMETRIC FUNCTIONS 41

For each equation, we pick out the solution between −π/2 and π/2 as the preferred solution.

For example, the preferred solution to sinx = 0 is x = 0, and the preferred solution to sinx = 0.3
is x = 0.305. We define the inverse sine, written “arcsin” or “sin−1,” as the function which gives

the preferred solution.

For −1 ≤ y ≤ 1,

arcsin y = x

means sinx = y with −
π

2
≤ x ≤

π

2
.

Thus the arcsine is the inverse function to the piece of the sine function having domain [−π/2, π/2].
(See Table 1.17 and Figure 1.58.) On a calculator, the arcsine function34 is usually denoted by

sin−1 .

Table 1.17 Values of sinx and sin−1 x

x sin x

−π
2

−1.000

−1.0 −0.841

−0.5 −0.479

0.0 0.000

0.5 0.479

1.0 0.841
π
2

1.000

x sin−1 x

−1.000 −π
2

−0.841 −1.0

−0.479 −0.5

0.000 0.0

0.479 0.5

0.841 1.0

1.000 π
2

−π
2

−1 1 π
2

−π
2

−1

1

π
2 y = sin−1 x

y = sin x

x

Figure 1.58: The arcsine function

The inverse tangent, written “arctan” or “tan−1,” is the inverse function for the piece of the

tangent function having the domain −π/2 < x < π/2. On a calculator, the inverse tangent is

usually denoted by tan−1 . The graph of the arctangent is shown in Figure 1.60.

For any y,

arctany = x

means tanx = y with −
π

2
< x <

π

2
.

The inverse cosine function, written “arccos” or “cos−1,” is discussed in Problem 55. The range

of the arccosine function is 0 ≤ x ≤ π.

−π
2

π
2

−1

1

y = tan x

x

Figure 1.59: The tangent function

−1 1

−π
2

π
2

y = tan−1 x

x

Figure 1.60: The arctangent function

34Note that sin−1 x = arcsinx is not the same as (sinx)−1 = 1/ sinx.
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42 Chapter One A LIBRARY OF FUNCTIONS

Exercises and Problems for Section 1.5

Exercises

For Exercises 1–9, draw the angle using a ray through the ori-

gin, and determine whether the sine, cosine, and tangent of

that angle are positive, negative, zero, or undefined.

1. 3π
2

2. 2π 3. π
4

4. 3π 5. π
6

6. 4π
3

7. −4π
3

8. 4 9. −1

Find the period and amplitude in Exercises 10–13.

10. y = 7 sin(3t) 11. z = 3 cos(u/4) + 5

12. w = 8− 4 sin(2x+ π) 13. r = 0.1 sin(πt) + 2

For Exercises 14–23, find a possible formula for each graph.

14.

8π

2

x

y 15.

6π

5

x

y

16.

π

4

x

y 17.

20π

8

x

y

18.

3

6

−5

5

x

y 19.

−
4π
5

4π
5

−2

2

x

y

20.

−2π 2π

1

3

x

y 21.

−9

9

18

−3

3

x

y

22.

8π

2

4

x

y 23.

4 8

3

6

x

y

In Exercises 24–26, calculate the quantity without using the

the trigonometric functions on your calculator. You are given

that sin (π/12) = 0.259 and cos (π/5) = 0.809. You may

want to draw a picture showing the angles involved and check

your answer on a calculator.

24. cos (−π
5
) 25. sin π

5
26. cos π

12

In Exercises 27–31, find a solution to the equation if possible.

Give the answer in exact form and in decimal form.

27. 2 = 5 sin(3x) 28. 1 = 8 cos(2x+ 1)− 3

29. 8 = 4 tan(5x) 30. 1 = 8 tan(2x+ 1)− 3

31. 8 = 4 sin(5x)

Problems

32. Without a calculator or computer, match the formulas

with the graphs in Figure 1.61.

(a) y = 2 cos (t− π/2) (b) y = 2 cos t

(c) y = 2 cos (t+ π/2)

2π

2

−2

t

y

✛ f(t)

✛ g(t)

✛ h(t)

Figure 1.61

33. What is the difference between sin x2, sin2 x, and

sin(sin x)? Express each of the three as a composition.

(Note: sin2 x is another way of writing (sin x)2.)

34. On the graph of y = sin x, points P and Q are at con-

secutive lowest and highest points. Find the slope of the

line through P and Q.

35. A population of animals oscillates sinusoidally between

a low of 700 on January 1 and a high of 900 on July 1.

(a) Graph the population against time.

(b) Find a formula for the population as a function of

time, t, in months since the start of the year.

36. The desert temperature, H , oscillates daily between 40◦F

at 5 am and 80◦F at 5 pm. Write a possible formula for

H in terms of t, measured in hours from 5 am.
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1.5 TRIGONOMETRIC FUNCTIONS 43

37. (a) Match the functions ω = f(t), ω = g(t), ω = h(t),
ω = k(t), whose values are in the table, with the

functions with formulas:

(i) ω = 1.5 + sin t (ii) ω = 0.5 + sin t
(iii) ω = −0.5 + sin t (iv) ω = −1.5 + sin t

(b) Based on the table, what is the relationship between

the values of g(t) and k(t)? Explain this relationship

using the formulas you chose for g and k.

(c) Using the formulas you chose for g and h, explain

why all the values of g are positive, whereas all the

values of h are negative.

t f(t) t g(t) t h(t) t k(t)

6.0 −0.78 3.0 1.64 5.0 −2.46 3.0 0.64

6.5 −0.28 3.5 1.15 5.1 −2.43 3.5 0.15

7.0 0.16 4.0 0.74 5.2 −2.38 4.0 −0.26

7.5 0.44 4.5 0.52 5.3 −2.33 4.5 −0.48

8.0 0.49 5.0 0.54 5.4 −2.27 5.0 −0.46

38. The depth of water in a tank oscillates sinusoidally once

every 6 hours. If the smallest depth is 5.5 feet and the

largest depth is 8.5 feet, find a possible formula for the

depth in terms of time in hours.

39. The voltage, V , of an electrical outlet in a home as a func-

tion of time, t (in seconds), is V = V0 cos (120πt).

(a) What is the period of the oscillation?

(b) What does V0 represent?

(c) Sketch the graph of V against t. Label the axes.

40. The power output, P , of a solar panel varies with the po-

sition of the sun. Let P = 10 sin θ watts, where θ is the

angle between the sun’s rays and the panel, 0 ≤ θ ≤ π.

On a typical summer day in Ann Arbor, Michigan, the

sun rises at 6 am and sets at 8 pm and the angle is

θ = πt/14, where t is time in hours since 6 am and

0 ≤ t ≤ 14.

(a) Write a formula for a function, f(t), giving the

power output of the solar panel (in watts) t hours

after 6 am on a typical summer day in Ann Arbor.

(b) Graph the function f(t) in part (a) for 0 ≤ t ≤ 14.

(c) At what time is the power output greatest? What is

the power output at this time?

(d) On a typical winter day in Ann Arbor, the sun rises

at 8 am and sets at 5 pm. Write a formula for a func-

tion, g(t), giving the power output of the solar panel

(in watts) t hours after 8 am on a typical winter day.

41. A baseball hit at an angle of θ to the horizontal with ini-

tial velocity v0 has horizontal range, R, given by

R =
v20
g

sin(2θ).

Here g is the acceleration due to gravity. Sketch R as a

function of θ for 0 ≤ θ ≤ π/2. What angle gives the

maximum range? What is the maximum range?

42. The visitors’ guide to St. Petersburg, Florida, contains

the chart shown in Figure 1.62 to advertise their good

weather. Fit a trigonometric function approximately to

the data, where H is temperature in degrees Fahrenheit,

and the independent variable is time in months. In order

to do this, you will need to estimate the amplitude and pe-

riod of the data, and when the maximum occurs. (There

are many possible answers to this problem, depending on

how you read the graph.)

Jan Feb Mar Apr May June July Aug Sept Oct Nov DecH (◦F)

50◦

60◦

70◦

80◦

90◦

100◦

Figure 1.62: “St. Petersburg...where we’re famous for our

wonderful weather and year-round sunshine.” (Reprinted

with permission)

43. The Bay of Fundy in Canada has the largest tides in the

world. The difference between low and high water lev-

els is 15 meters (nearly 50 feet). At a particular point the

depth of the water, y meters, is given as a function of

time, t, in hours since midnight by

y = D + A cos (B(t−C)) .

(a) What is the physical meaning of D?

(b) What is the value of A?

(c) What is the value of B? Assume the time between

successive high tides is 12.4 hours.

(d) What is the physical meaning of C?

44. A compact disc spins at a rate of 200 to 500 revolutions

per minute. What are the equivalent rates measured in ra-

dians per second?

45. When a car’s engine makes less than about 200 revolu-

tions per minute, it stalls. What is the period of the rota-

tion of the engine when it is about to stall?

46. What is the period of the earth’s revolution around the

sun?

47. What is the approximate period of the moon’s revolution

around the earth?

48. For a boat to float in a tidal bay, the water must be at

least 2.5 meters deep. The depth of water around the boat,

d(t), in meters, where t is measured in hours since mid-

night, is

d(t) = 5 + 4.6 sin(0.5t).

(a) What is the period of the tides in hours?

(b) If the boat leaves the bay at midday, what is the lat-

est time it can return before the water becomes too

shallow?
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44 Chapter One A LIBRARY OF FUNCTIONS

49. Match graphs A-D in Figure 1.63 with the functions be-

low. Assume a, b, c and d are positive constants.

f(t) = sin t+ b h(t) = sin t+ ect + d

g(t) = sin t+ at+ b r(t) = sin t− ect + b

C

B
A

D
t

Figure 1.63

50. In Figure 1.64, the blue curve shows monthly mean car-

bon dioxide (CO2) concentration, in parts per million

(ppm) at Mauna Loa Observatory, Hawaii, as a function

of t, in months, since December 2005. The black curve

shows the monthly mean concentration adjusted for sea-

sonal CO2 variation.35

(a) Approximately how much did the monthly mean

CO2 increase between December 2005 and Decem-

ber 2010?

(b) Find the average monthly rate of increase of the

monthly mean CO2 between December 2005 and

December 2010. Use this information to find a linear

function that approximates the black curve.

(c) The seasonal CO2 variation between December

2005 and December 2010 can be approximated by

a sinusoidal function. What is the approximate pe-

riod of the function? What is its amplitude? Give a

formula for the function.

(d) The blue curve may be approximated by a function

of the form h(t) = f(t) + g(t), where f(t) is sinu-

soidal and g(t) is linear. Using your work in parts (b)

and (c), find a possible formula for h(t). Graph h(t)
using the scale in Figure 1.64.

12 24 36 48 60

375

380
385

390

395

t (months
since Dec 2005)

ppm

Figure 1.64

51. (a) Use a graphing calculator or computer to estimate

the period of 2 sin θ + 3 cos(2θ).
(b) Explain your answer, given that the period of sin θ

is 2π and the period of cos(2θ) is π.

52. Find the area of the trapezoidal cross-section of the irri-

gation canal shown in Figure 1.65.

θθ

✻

❄

h

✲✛ w

Figure 1.65

53. Graph y = sin x, y = 0.4, and y = −0.4.

(a) From the graph, estimate to one decimal place all the

solutions of sin x = 0.4 with −π ≤ x ≤ π.

(b) Use a calculator to find arcsin(0.4). What is the re-

lation between arcsin(0.4) and each of the solutions

you found in part (a)?

(c) Estimate all the solutions to sin x = −0.4 with

−π ≤ x ≤ π (again, to one decimal place).

(d) What is the relation between arcsin(0.4) and each

of the solutions you found in part (c)?

54. Find the angle, in degrees, that a wheelchair ramp makes

with the ground if the ramp rises 1 foot over a horizontal

distance of

(a) 12 ft, the normal requirement36

(b) 8 ft, the steepest ramp legally permitted

(c) 20 ft, the recommendation if snow can be expected

on the ramp

55. This problem introduces the arccosine function, or in-

verse cosine, denoted by cos−1 on most calculators.

(a) Using a calculator set in radians, make a table of val-

ues, to two decimal places, of g(x) = arccos x, for

x = −1,−0.8,−0.6, . . . , 0, . . . , 0.6, 0.8, 1.

(b) Sketch the graph of g(x) = arccos x.

(c) Why is the domain of the arccosine the same as the

domain of the arcsine?

(d) What is the range of the arccosine?

(e) Why is the range of the arccosine not the same as the

range of the arcsine?

35http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed March 2011. Monthly means joined by segments to highlight

trends.
36http://www.access-board.gov/adaag/html/adaag.htm#4.1.6(3)a, accessed June 6, 2011.
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1.6 POWERS, POLYNOMIALS, AND RATIONAL FUNCTIONS 45

Strengthen Your Understanding

In Problems 56–57, explain what is wrong with the statement.

56. For the function f(x) = sin(Bx) with B > 0, increas-

ing the value of B increases the period.

57. For positive A, B, C, the maximum value of the function

y = A sin(Bx) +C is y = A.

In Problems 58–59, give an example of:

58. A sine function with period 23.

59. A cosine function which oscillates between values of

1200 and 2000.

Are the statements in Problems 60–72 true or false? Give an

explanation for your answer.

60. The function f(θ) = cos θ − sin θ is increasing on

0 ≤ θ ≤ π/2.

61. The function f(t) = sin(0.05πt) has period 0.05.

62. If t is in seconds, g(t) = cos(200πt) executes 100 cycles

in one second.

63. The function f(θ) = tan(θ − π/2) is not defined at

θ = π/2, 3π/2, 5π/2 . . ..

64. sin |x| = sin x for −2π < x < 2π

65. sin |x| = | sin x| for −2π < x < 2π

66. cos |x| = | cosx| for −2π < x < 2π

67. cos |x| = cosx for −2π < x < 2π

68. The function f(x) = sin(x2) is periodic, with period

2π.

69. The function g(θ) = esin θ is periodic.

70. If f(x) is a periodic function with period k, then f(g(x))
is periodic with period k for every function g(x).

71. If g(x) is a periodic function, then f(g(x)) is periodic

for every function f(x).

72. The function f(x) = | sin x| is even.

1.6 POWERS, POLYNOMIALS, AND RATIONAL FUNCTIONS

Power Functions

A power function is a function in which the dependent variable is proportional to a power of the

independent variable:

A power function has the form

f(x) = kxp, where k and p are constant.

For example, the volume, V , of a sphere of radius r is given by

V = g(r) =
4

3
πr3.

As another example, the gravitational force, F , on a unit mass at a distance r from the center of the

earth is given by Newton’s Law of Gravitation, which says that, for some positive constant k,

F =
k

r2
or F = kr−2.

We consider the graphs of the power functions xn, with n a positive integer. Figures 1.66

and 1.67 show that the graphs fall into two groups: odd and even powers. For n greater than 1, the

odd powers have a “seat” at the origin and are increasing everywhere else. The even powers are

first decreasing and then increasing. For large x, the higher the power of x, the faster the function

climbs.
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−2 −1

1 2

−10

−5

5

10

x

x5 x3

x

Figure 1.66: Odd powers of x: “Seat”

shaped for n > 1

−3 −2 −1 1 2 3

−5

5

10

x

x4

x2

Figure 1.67: Even powers of x:
⋃

-shaped

Exponentials and Power Functions: Which Dominate?

In everyday language, the word exponential is often used to imply very fast growth. But do expo-

nential functions always grow faster than power functions? To determine what happens “in the long

run,” we often want to know which functions dominate as x gets arbitrarily large.

Let’s consider y = 2x and y = x3. The close-up view in Figure 1.68(a) shows that between

x = 2 and x = 4, the graph of y = 2x lies below the graph of y = x3. The far-away view in Fig-

ure 1.68(b) shows that the exponential function y = 2x eventually overtakes y = x3. Figure 1.68(c),

which gives a very far-away view, shows that, for large x, the value of x3 is insignificant compared

to 2x. Indeed, 2x is growing so much faster than x3 that the graph of 2x appears almost vertical in

comparison to the more leisurely climb of x3.

We say that Figure 1.68(a) gives a local view of the functions’ behavior, whereas Figure 1.68(c)

gives a global view.

(a)

1 2 3 4

10

20

x

y

x3 2x

Close up
(Local)

(b)

5 10

1,000

2,000

x

y

2x x3

(c)

5 10 15

5,000

104

x

y

2x

x3

Far away
(Global)

Figure 1.68: Comparison of y = 2x and y = x3: Notice that y = 2x eventually dominates y = x3

In fact, every exponential growth function eventually dominates every power function. Al-

though an exponential function may be below a power function for some values of x, if we look

at large enough x-values, ax (with a > 1) will eventually dominate xn, no matter what n is.

Polynomials

Polynomials are the sums of power functions with nonnegative integer exponents:

y = p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.
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Quadratic
(n = 2)

Cubic
(n = 3)

Quartic
(n = 4)

Quintic
(n = 5)

Figure 1.69: Graphs of typical polynomials of degree n

Here n is a nonnegative integer called the degree of the polynomial, and an, an−1, . . . , a1, a0 are

constants, with leading coefficient an 6= 0. An example of a polynomial of degree n = 3 is

y = p(x) = 2x3 − x2 − 5x− 7.

In this case a3 = 2, a2 = −1, a1 = −5, and a0 = −7. The shape of the graph of a polynomial

depends on its degree; typical graphs are shown in Figure 1.69. These graphs correspond to a pos-

itive coefficient for xn; a negative leading coefficient turns the graph upside down. Notice that the

quadratic “turns around” once, the cubic “turns around” twice, and the quartic (fourth degree) “turns

around” three times. An nth degree polynomial “turns around” at most n − 1 times (where n is a

positive integer), but there may be fewer turns.

Example 1 Find possible formulas for the polynomials whose graphs are in Figure 1.70.

−2 2

4

x

f(x)(a)

−3 1 2

−12

x

g(x)(b)

−3 2
x

h(x)

(c)

Figure 1.70: Graphs of polynomials

Solution (a) This graph appears to be a parabola, turned upside down, and moved up by 4, so

f(x) = −x2 + 4.

The negative sign turns the parabola upside down and the +4 moves it up by 4. Notice that this

formula does give the correct x-intercepts since 0 = −x2 + 4 has solutions x = ±2. These

values of x are called zeros of f .

We can also solve this problem by looking at the x-intercepts first, which tell us that f(x)
has factors of (x + 2) and (x− 2). So

f(x) = k(x+ 2)(x− 2).

To find k, use the fact that the graph has a y-intercept of 4, so f(0) = 4, giving

4 = k(0 + 2)(0− 2),

or k = −1. Therefore, f(x) = −(x+ 2)(x− 2), which multiplies out to −x2 + 4.

Note that f(x) = 4 − x4/4 also has the same basic shape, but is flatter near x = 0. There

are many possible answers to these questions.

(b) This looks like a cubic with factors (x+ 3), (x− 1), and (x− 2), one for each intercept:

g(x) = k(x+ 3)(x− 1)(x− 2).

Since the y-intercept is −12, we have

−12 = k(0 + 3)(0− 1)(0− 2).
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48 Chapter One A LIBRARY OF FUNCTIONS

So k = −2, and we get the cubic polynomial

g(x) = −2(x+ 3)(x− 1)(x− 2).

(c) This also looks like a cubic with zeros at x = 2 and x = −3. Notice that at x = 2 the graph of

h(x) touches the x-axis but does not cross it, whereas at x = −3 the graph crosses the x-axis.

We say that x = 2 is a double zero, but that x = −3 is a single zero.

To find a formula for h(x), imagine the graph of h(x) to be slightly lower down, so that the

graph has one x-intercept near x = −3 and two near x = 2, say at x = 1.9 and x = 2.1. Then

a formula would be

h(x) ≈ k(x+ 3)(x− 1.9)(x− 2.1).

Now move the graph back to its original position. The zeros at x = 1.9 and x = 2.1 move

toward x = 2, giving

h(x) = k(x+ 3)(x− 2)(x− 2) = k(x+ 3)(x− 2)2.

The double zero leads to a repeated factor, (x−2)2. Notice that when x > 2, the factor (x−2)2

is positive, and when x < 2, the factor (x − 2)2 is still positive. This reflects the fact that

h(x) does not change sign near x = 2. Compare this with the behavior near the single zero at

x = −3, where h does change sign.

We cannot find k, as no coordinates are given for points off of the x-axis. Any positive

value of k stretches the graph vertically but does not change the zeros, so any positive k works.

Example 2 Using a calculator or computer, graph y = x4 and y = x4 − 15x2 − 15x for −4 ≤ x ≤ 4 and for

−20 ≤ x ≤ 20. Set the y range to −100 ≤ y ≤ 100 for the first domain, and to −100 ≤ y ≤
200,000 for the second. What do you observe?

Solution From the graphs in Figure 1.71 we see that close up (−4 ≤ x ≤ 4) the graphs look different; from

far away, however, they are almost indistinguishable. The reason is that the leading terms (those

with the highest power of x) are the same, namely x4, and for large values of x, the leading term

dominates the other terms.

−4 4

−100

100

x

y

y = x4

Close-up
or

Local
−4

4

−100

100

x

y

y = x4 − 15x2 − 15x

Far away
or

Global

−20 20

2 · 105

x

y

y = x4

−20 20

2 · 105

x

y

y = x4 − 15x2 − 15x

Figure 1.71: Local and global views of y = x4 and y = x4 − 15x2 − 15x
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1.6 POWERS, POLYNOMIALS, AND RATIONAL FUNCTIONS 49

Rational Functions

Rational functions are ratios of polynomials, p and q:

f(x) =
p(x)

q(x)
.

Example 3 Look at a graph and explain the behavior of y =
1

x2 + 4
.

Solution The function is even, so the graph is symmetric about the y-axis. As x gets larger, the denominator

gets larger, making the value of the function closer to 0. Thus the graph gets arbitrarily close to the

x-axis as x increases without bound. See Figure 1.72.

x

y

Figure 1.72: Graph of y = 1
x2+4

In the previous example, we say that y = 0 (i.e. the x-axis) is a horizontal asymptote. Writing

“→” to mean “tends to,” we have y → 0 as x → ∞ and y → 0 as x → −∞.

If the graph of y = f(x) approaches a horizontal line y = L as x → ∞ or x → −∞, then

the line y = L is called a horizontal asymptote.37 This occurs when

f(x) → L as x → ∞ or f(x) → L as x → −∞.

If the graph of y = f(x) approaches the vertical line x = K as x → K from one side or the

other, that is, if

y → ∞ or y → −∞ when x → K,

then the line x = K is called a vertical asymptote.

The graphs of rational functions may have vertical asymptotes where the denominator is zero.

For example, the function in Example 3 has no vertical asymptotes as the denominator is never

zero. The function in Example 4 has two vertical asymptotes corresponding to the two zeros in the

denominator.

Rational functions have horizontal asymptotes if f(x) approaches a finite number as x → ∞
or x → −∞. We call the behavior of a function as x → ±∞ its end behavior.

Example 4 Look at a graph and explain the behavior of y =
3x2 − 12

x2 − 1
, including end behavior.

Solution Factoring gives

y =
3x2 − 12

x2 − 1
=

3(x+ 2)(x− 2)

(x+ 1)(x− 1)

so x = ±1 are vertical asymptotes. If y = 0, then 3(x + 2)(x − 2) = 0 or x = ±2; these are the

x-intercepts. Note that zeros of the denominator give rise to the vertical asymptotes, whereas zeros

of the numerator give rise to x-intercepts. Substituting x = 0 gives y = 12; this is the y-intercept.

The function is even, so the graph is symmetric about the y-axis.

37We are assuming that f(x) gets arbitrarily close to L as x → ∞.
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Table 1.18 Values of

y = 3x2−12
x2−1

x y =
3x2

−12

x2
−1

±10 2.909091

±100 2.999100

±1000 2.999991

−4 4
−10

20

x

y

Horizontal asymptote
y = 3

Vertical asymptote
x = 1

Vertical asymptote
x = −1

Figure 1.73: Graph of the function y = 3x2
−12

x2
−1

To see what happens as x → ±∞, look at the y-values in Table 1.18. Clearly y is getting closer

to 3 as x gets large positively or negatively. Alternatively, realize that as x → ±∞, only the highest

powers of x matter. For large x, the 12 and the 1 are insignificant compared to x2, so

y =
3x2 − 12

x2 − 1
≈

3x2

x2
= 3 for large x.

So y → 3 as x → ±∞, and therefore the horizontal asymptote is y = 3. See Figure 1.73. Since, for

x > 1, the value of (3x2 − 12)/(x2 − 1) is less than 3, the graph lies below its asymptote. (Why

doesn’t the graph lie below y = 3 when −1 < x < 1?)

Exercises and Problems for Section 1.6

Exercises

For Exercises 1–2, what happens to the value of the function

as x → ∞ and as x → −∞?

1. y = 0.25x3 + 3 2. y = 2 · 104x

In Exercises 3–10, determine the end behavior of each func-

tion as x → +∞ and as x → −∞.

3. f(x) = −10x4

4. f(x) = 3x5

5. f(x) = 5x4 − 25x3 − 62x2 + 5x+ 300

6. f(x) = 1000− 38x + 50x2 − 5x3

7. f(x) =
3x2 + 5x+ 6

x2 − 4

8. f(x) =
10 + 5x2 − 3x3

2x3 − 4x+ 12

9. f(x) = 3x−4

10. f(x) = ex

In Exercises 11–16, which function dominates as x → ∞?

11. 1000x4 or 0.2x5

12. 10e0.1x or 5000x2

13. 100x5 or 1.05x

14. 2x4 or 10x3 + 25x2 + 50x+ 100

15. 20x4 + 100x2 + 5x or 25− 40x2 + x3 + 3x5

16.
√
x or ln x

17. Each of the graphs in Figure 1.74 is of a polynomial. The

windows are large enough to show end behavior.

(a) What is the minimum possible degree of the polyno-

mial?

(b) Is the leading coefficient of the polynomial positive

or negative?

(I) (II) (III)

(IV) (V)

Figure 1.74

Find cubic polynomials for the graphs in Exercises 18–19.

18.

−2 1 5

2

x

19.

−2 2

4

x
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1.6 POWERS, POLYNOMIALS, AND RATIONAL FUNCTIONS 51

Find possible formulas for the graphs in Exercises 20–23.

20.

−3 1 4
x

21.

−3 4
x

22.

−2 1 3 5
x

23.

−2 2 5
x

In Exercises 24–26, choose the functions that are in the given

family, assuming a, b, and c are constants.

f(x) =
√
x4 + 16 g(x) = ax23

h(x) = − 1

5x−2
p(x) =

a3bx

c

q(x) =
ab2

c
r(x) = −x+ b−

√
cx4

24. Exponential 25. Quadratic 26. Linear

Problems

27. How many distinct roots can a polynomial of degree 5

have? (List all possibilities.) Sketch a possible graph for

each case.

28. A rational function y = f(x) is graphed in Figure 1.75.

If f(x) = g(x)/h(x) with g(x) and h(x) both quadratic

functions, give possible formulas for g(x) and h(x).

1

y = 2
y

y = f(x)

x

Figure 1.75

29. Find a calculator window in which the graphs of f(x) =
x3 + 1000x2 + 1000 and g(x) = x3 − 1000x2 − 1000
appear indistinguishable.

30. For each function, fill in the blanks in the statements:

f(x) → as x → −∞,
f(x) → as x → +∞.

(a) f(x) = 17 + 5x2 − 12x3 − 5x4

(b) f(x) =
3x2 − 5x+ 2

2x2 − 8
(c) f(x) = ex

31. The DuBois formula relates a person’s surface area s,

in m2, to weight w, in kg, and height h, in cm, by

s = 0.01w0.25h0.75.

(a) What is the surface area of a person who weighs

65 kg and is 160 cm tall?

(b) What is the weight of a person whose height is

180 cm and who has a surface area of 1.5 m2?

(c) For people of fixed weight 70 kg, solve for h as a

function of s. Simplify your answer.

32. According to Car and Driver, an Alfa Romeo going at 70

mph requires 177 feet to stop. Assuming that the stopping

distance is proportional to the square of velocity, find the

stopping distances required by an Alfa Romeo going at

35 mph and at 140 mph (its top speed).

33. Poiseuille’s Law gives the rate of flow, R, of a gas

through a cylindrical pipe in terms of the radius of the

pipe, r, for a fixed drop in pressure between the two ends

of the pipe.

(a) Find a formula for Poiseuille’s Law, given that the

rate of flow is proportional to the fourth power of

the radius.

(b) If R = 400 cm3/sec in a pipe of radius 3 cm for a

certain gas, find a formula for the rate of flow of that

gas through a pipe of radius r cm.

(c) What is the rate of flow of the same gas through a

pipe with a 5 cm radius?

34. A box of fixed volume V has a square base with side

length x. Write a formula for the height, h, of the box in

terms of x and V . Sketch a graph of h versus x.

35. A closed cylindrical can of fixed volume V has radius r.

(a) Find the surface area, S, as a function of r.

(b) What happens to the value of S as r → ∞?

(c) Sketch a graph of S against r, if V = 10 cm3.

In Problems 36–38, find all horizontal and vertical asymptotes

for each rational function.

36. f(x) =
5x− 2

2x+ 3
37. f(x) =

x2 + 5x+ 4

x2 − 4

38. f(x) =
5x3 + 7x− 1

x3 − 27
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39. The height of an object above the ground at time t is

given by

s = v0t−
g

2
t2,

where v0 is the initial velocity and g is the acceleration

due to gravity.

(a) At what height is the object initially?

(b) How long is the object in the air before it hits the

ground?

(c) When will the object reach its maximum height?

(d) What is that maximum height?

40. A pomegranate is thrown from ground level straight up

into the air at time t = 0 with velocity 64 feet per sec-

ond. Its height at time t seconds is f(t) = −16t2 + 64t.
Find the time it hits the ground and the time it reaches its

highest point. What is the maximum height?

41. (a) If f(x) = ax2+ bx+ c, what can you say about the

values of a, b, and c if:

(i) (1, 1) is on the graph of f(x)?

(ii) (1, 1) is the vertex of the graph of f(x)? [Hint:

The axis of symmetry is x = −b/(2a).]

(iii) The y-intercept of the graph is (0, 6)?

(b) Find a quadratic function satisfying all three condi-

tions.

42. A cubic polynomial with positive leading coefficient is

shown in Figure 1.76 for −10 ≤ x ≤ 10 and −10 ≤
y ≤ 10. What can be concluded about the total number

of zeros of this function? What can you say about the

location of each of the zeros? Explain.

−10 −5 5 10

−10

−5

5

10

x

y

Figure 1.76

43. After running 3 miles at a speed of x mph, a man walked

the next 6 miles at a speed that was 2 mph slower. Ex-

press the total time spent on the trip as a function of x.

What horizontal and vertical asymptotes does the graph

of this function have?

44. Which of the functions I–III meet each of the following

descriptions? There may be more than one function for

each description, or none at all.

(a) Horizontal asymptote of y = 1.

(b) The x-axis is a horizontal asymptote.

(c) Symmetric about the y-axis.

(d) An odd function.

(e) Vertical asymptotes at x = ±1.

I. y =
x− 1

x2 + 1
II. y =

x2 − 1

x2 + 1
III. y =

x2 + 1

x2 − 1

45. Values of three functions are given in Table 1.19, rounded

to two decimal places. One function is of the form y =
abt, one is of the form y = ct2, and one is of the form

y = kt3. Which function is which?

Table 1.19

t f(t) t g(t) t h(t)

2.0 4.40 1.0 3.00 0.0 2.04

2.2 5.32 1.2 5.18 1.0 3.06

2.4 6.34 1.4 8.23 2.0 4.59

2.6 7.44 1.6 12.29 3.0 6.89

2.8 8.62 1.8 17.50 4.0 10.33

3.0 9.90 2.0 24.00 5.0 15.49

46. Use a graphing calculator or a computer to graph y = x4

and y = 3x. Determine approximate domains and ranges

that give each of the graphs in Figure 1.77.

x

y

x4 3x
(a)

x

y

x4

3x

(b)

x

y

x4

3x
(c)

Figure 1.77

47. The rate, R, at which a population in a confined space in-

creases is proportional to the product of the current popu-

lation, P , and the difference between the carrying capac-

ity, L, and the current population. (The carrying capacity

is the maximum population the environment can sustain.)

(a) Write R as a function of P .

(b) Sketch R as a function of P .
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1.7 INTRODUCTION TO CONTINUITY 53

48. Consider the point P at the intersection of the circle

x2 + y2 = 2a2 and the parabola y = x2/a in Fig-

ure 1.78. If a is increased, the point P traces out a curve.

For a > 0, find the equation of this curve.

x

y

P

y = x2/a

x2 + y2 = 2a2

Figure 1.78

49. When an object of mass m moves with a velocity v that

is small compared to the velocity of light, c, its energy is

given approximately by

E ≈ 1

2
mv2.

If v is comparable in size to c, then the energy must be

computed by the exact formula

E = mc2

(

1
√

1− v2/c2
− 1

)

.

(a) Plot a graph of both functions for E against v for

0 ≤ v ≤ 5 · 108 and 0 ≤ E ≤ 5 · 1017. Take

m = 1 kg and c = 3 · 108 m/sec. Explain how you

can predict from the exact formula the position of

the vertical asymptote.

(b) What do the graphs tell you about the approxima-

tion? For what values of v does the first formula give

a good approximation to E?

Strengthen Your Understanding

In Problems 50–51, explain what is wrong with the statement.

50. The graph of a polynomial of degree 5 cuts the horizontal

axis five times.

51. Every rational function has a horizontal asymptote.

In Problems 52–57, give an example of:

52. A polynomial of degree 3 whose graph cuts the horizon-

tal axis three times to the right of the origin.

53. A rational function with horizontal asymptote y = 3.

54. A rational function that is not a polynomial and that has

no vertical asymptote.

55. A function that has a vertical asymptote at x = −7π.

56. A function that has exactly 17 vertical asymptotes.

57. A function that has a vertical asymptote which is crossed

by a horizontal asymptote.

Are the statements in Problems 58–59 true or false? Give an

explanation for your answer.

58. Every polynomial of even degree has a least one real

zero.

59. Every polynomial of odd degree has a least one real zero.

60. List the following functions in order from smallest to

largest as x → ∞ (that is, as x increases without bound).

(a) f(x) = −5x (b) g(x) = 10x

(c) h(x) = 0.9x (d) k(x) = x5

(e) l(x) = πx

1.7 INTRODUCTION TO CONTINUITY

This section gives an intuitive introduction to the idea of continuity. This leads to the concept of

limit and a definition of continuity in Section 1.8.

Continuity of a Function on an Interval: Graphical Viewpoint

Roughly speaking, a function is said to be continuous on an interval if its graph has no breaks,

jumps, or holes in that interval. Continuity is important because, as we shall see, continuous func-

tions have many desirable properties.

For example, to locate the zeros of a function, we often look for intervals where the function

changes sign. In the case of the function f(x) = 3x3 − x2 + 2x − 1, for instance, we expect38

to find a zero between 0 and 1 because f(0) = −1 and f(1) = 3. (See Figure 1.79.) To be sure

that f(x) has a zero there, we need to know that the graph of the function has no breaks or jumps

in it. Otherwise the graph could jump across the x-axis, changing sign but not creating a zero. For

example, f(x) = 1/x has opposite signs at x = −1 and x = 1, but no zeros for −1 ≤ x ≤ 1

38This is due to the Intermediate Value Theorem, which is discussed on page 55.
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54 Chapter One A LIBRARY OF FUNCTIONS

because of the break at x = 0. (See Figure 1.80.) To be certain that a function has a zero in an

interval on which it changes sign, we need to know that the function is defined and continuous in

that interval.

−2 −1 1 2

−5

5 f(x)

x

Figure 1.79: The graph of

f(x) = 3x3 − x2 + 2x− 1

−1

f(x) =
1

x

1
x

Figure 1.80: No zero although

f(−1) and f(1) have opposite signs

1 2 3

45

65

85
p(x)

x (ounces)

y (cents)

Figure 1.81: Cost of mailing a letter

A continuous function has a graph which can be drawn without lifting the pencil from the paper.

Example: The function f(x) = 3x3 − x2 + 2x − 1 is continuous on any interval. (See Fig-

ure 1.79.)

Example: The function f(x) = 1/x is not defined at x = 0. It is continuous on any interval not

containing the origin. (See Figure 1.80.)

Example: Suppose p(x) is the price of mailing a first-class letter weighing x ounces. It costs

45c/ for one ounce or less, 65c/ between one and two ounces, and so on. So the graph (in Figure 1.81)

is a series of steps. This function is not continuous on any open interval containing a positive integer

because the graph jumps at these points.

Which Functions Are Continuous?

Requiring a function to be continuous on an interval is not asking very much, as any function whose

graph is an unbroken curve over the interval is continuous. For example, exponential functions, poly-

nomials, and the sine and cosine are continuous on every interval. Rational functions are continuous

on any interval in which their denominators are not zero. Functions created by adding, multiplying,

or composing continuous functions are also continuous.

The Intermediate Value Theorem

Continuity tells us about the values taken by a function. In particular, a continuous function cannot

skip values. For example, the function in the next example must have a zero because its graph cannot

skip over the x-axis.

Example 1 What do the values in Table 1.20 tell you about the zeros of f(x) = cosx− 2x2?

Table 1.20

x f(x)

0 1.00

0.2 0.90

0.4 0.60

0.6 0.11

0.8 −0.58

1.0 −1.46

0.2 0.4 0.6 0.8 1

−1

1

x

f(x) = cos x− 2x2

Figure 1.82: Zeros occur where the graph of a

continuous function crosses the horizontal axis

Solution Since f(x) is the difference of two continuous functions, it is continuous. We conclude that f(x)
has at least one zero in the interval 0.6 < x < 0.8, since f(x) changes from positive to negative on

that interval. The graph of f(x) in Figure 1.82 suggests that there is only one zero in the interval

0 ≤ x ≤ 1, but we cannot be sure of this from the graph or the table of values.
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1.7 INTRODUCTION TO CONTINUITY 55

In the previous example, we concluded that f(x) = cosx − 2x2 has a zero between x = 0
and x = 1 because f(x) is positive at x = 0 and negative at x = 1. More generally, an intuitive

notion of continuity tells us that, as we follow the graph of a continuous function f from some point

(a, f(a)) to another point (b, f(b)), then f takes on all intermediate values between f(a) and f(b).
(See Figure 1.83.) This is:

Theorem 1.1: Intermediate Value Theorem

Suppose f is continuous on a closed interval [a, b]. If k is any number between f(a) and f(b),
then there is at least one number c in [a, b] such that f(c) = k.

The Intermediate Value Theorem depends on the formal definition of continuity given in Sec-

tion 1.8. See also www.wiley.com/college/hughes-hallett.The key idea is to find successively smaller

subintervals of [a, b] on which f changes from less than k to more than k. These subintervals con-

verge on the number c.

a c b

k

(a, f(a))

(b, f(b))

x

Figure 1.83: The Intermediate Value Theorem

Continuity of a Function at a Point: Numerical Viewpoint

A function is continuous if nearby values of the independent variable give nearby values of the func-

tion. In practical work, continuity is important because it means that small errors in the independent

variable lead to small errors in the value of the function.

Example: Suppose that f(x) = x2 and that we want to compute f(π). Knowing f is continuous

tells us that taking x = 3.14 should give a good approximation to f(π), and that we can get as

accurate an approximation to f(π) as we want by using enough decimals of π.

Example: If p(x) is the cost of mailing a letter weighing x ounces, then p(0.99) = p(1) = 45c/,

whereas p(1.01) = 65c/, because as soon as we get over 1 ounce, the price jumps up to 65c/. So

a small difference in the weight of a letter can lead to a significant difference in its mailing cost.

Hence p is not continuous at x = 1.

In other words, if f(x) is continuous at x = c, the values of f(x) approach f(c) as x ap-

proaches c. Using the concept of a limit introduced in Section 1.8, we can define more precisely

what it means for the values of f(x) to approach f(c) as x approaches c.

Example 2 Investigate the continuity of f(x) = x2 at x = 2.

Solution From Table 1.21, it appears that the values of f(x) = x2 approach f(2) = 4 as x approaches 2.

Thus f appears to be continuous at x = 2. Continuity at a point describes behavior of a function

near a point, as well as at the point.

Table 1.21 Values of x2 near x = 2

x 1.9 1.99 1.999 2.001 2.01 2.1

x2 3.61 3.96 3.996 4.004 4.04 4.41
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56 Chapter One A LIBRARY OF FUNCTIONS

Exercises and Problems for Section 1.7

Exercises

In Exercises 1–10, is the function continuous on the interval?

1.
1

x− 2
on [−1, 1] 2.

1

x− 2
on [0, 3]

3.
1√

2x− 5
on [3, 4] 4.

x

x2 + 2
on [−2, 2]

5. 2x+ x2/3 on [−1, 1] 6. 2x+ x−1 on [−1, 1]

7.
1

cosx
on [0, π] 8.

1

sin x
on [−π

2
, π
2
]

9.
ex

ex − 1
on [−1, 1] 10.

esin θ

cos θ
on [−π

4
, π
4
]

In Exercises 11–14, show that there is a number c, with

0 ≤ c ≤ 1, such that f(c) = 0.

11. f(x) = x3 + x2 − 1 12. f(x) = ex − 3x

13. f(x) = x− cos x 14. f(x) = 2x − 1/x

15. Are the following functions continuous? Explain.

(a) f(x) =
{
x x ≤ 1
x2 1 < x

(b) g(x) =
{
x x ≤ 3
x2 3 < x

Problems

16. Which of the following are continuous functions of time?

(a) The quantity of gas in the tank of a car on a journey

between New York and Boston.

(b) The number of students enrolled in a class during a

semester.

(c) The age of the oldest person alive.

17. A car is coasting down a hill at a constant speed. A truck

collides with the rear of the car, causing it to lurch ahead.

Graph the car’s speed from a time shortly before impact

to a time shortly after impact. Graph the distance from

the top of the hill for this time period. What can you say

about the continuity of each of these functions?

18. An electrical circuit switches instantaneously from a 6

volt battery to a 12 volt battery 7 seconds after being

turned on. Graph the battery voltage against time. Give

formulas for the function represented by your graph.

What can you say about the continuity of this function?

In Problems 19–22 find k so that the function is continuous

on any interval.

19. f(x) =
{
kx x ≤ 3
5 3 < x

20. f(x) =

{
kx 0 ≤ x < 2

3x2 2 ≤ x

21. g(t) =
{
t+ k t ≤ 5
kt 5 < t

22. h(x) =
{
k cosx 0 ≤ x ≤ π
12− x π < x

23. (a) For k = 1, sketch

f(x) =
{
kx 0 ≤ x ≤ 2
(x− 2)2 + 3 2 < x ≤ 4.

(b) Find the value of k so that f(x) is continuous at

x = 2.

(c) Sketch f(x) using the value of k you found in

part (a).

In Problems 24–29, find a value of k making h(x) continuous

on [0, 5].

24. h(x) =
{
kx 0 ≤ x < 1
x+ 3 1 ≤ x ≤ 5.

25. h(x) =
{
kx 0 ≤ x ≤ 1
2kx+ 3 1 < x ≤ 5.

26. h(x) =
{
k sin x 0 ≤ x ≤ π
x+ 4 π < x ≤ 5.

27. h(x) =

{

ekx 0 ≤ x < 2
x+ 1 2 ≤ x ≤ 5.

28. h(x) =
{
0.5x 0 ≤ x < 1
sin(kx) 1 ≤ x ≤ 5.

29. h(x) =
{
ln(kx+ 1) 0 ≤ x ≤ 2
x+ 4 2 < x ≤ 5.

30. For t in months, a population, in thousands, is approxi-

mated by a continuous function

P (t) =
{
ekt 0 ≤ t ≤ 12
100 t > 12.

(a) What is the initial value of the population?

(b) What must be the value of k?

(c) Describe in words how the population is changing.

31. Is the following function continuous on [−1, 1]?

f(x) =

{ x

|x| x 6= 0

0 x = 0
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1.8 LIMITS 57

32. Discuss the continuity of the function g graphed in Fig-

ure 1.84 and defined as follows:

g(θ) =







sin θ

θ
for θ 6= 0

1/2 for θ = 0.

−2π −π π 2π

1

θ

g(θ)

1
2

Figure 1.84

33. A 0.6 ml dose of a drug is injected into a patient steadily

for half a second. At the end of this time, the quantity,

Q, of the drug in the body starts to decay exponentially

at a continuous rate of 0.2% per second. Using formulas,

express Q as a continuous function of time, t in seconds.

34. Sketch the graphs of three different functions that are

continuous on 0 ≤ x ≤ 1 and that have the values given

in the table. The first function is to have exactly one zero

in [0, 1], the second is to have at least two zeros in the in-

terval [0.6, 0.8], and the third is to have at least two zeros

in the interval [0, 0.6].

x 0 0.2 0.4 0.6 0.8 1.0

f(x) 1.00 0.90 0.60 0.11 −0.58 −1.46

35. Let p(x) be a cubic polynomial with p(5) < 0, p(10) >
0, and p(12) < 0. What can you say about the number

and location of zeros of p(x)?

36. (a) What does a graph of y = ex and y = 4 − x2 tell

you about the solutions to the equation ex = 4−x2?

(b) Evaluate f(x) = ex + x2 − 4 at x =
−4,−3,−2,−1, 0, 1, 2, 3, 4. In which intervals do

the solutions to ex = 4− x2 lie?

37. (a) Sketch the graph of a continuous function f with all

of the following properties:

(i) f(0) = 2

(ii) f(x) is decreasing for 0 ≤ x ≤ 3

(iii) f(x) is increasing for 3 < x ≤ 5

(iv) f(x) is decreasing for x > 5

(v) f(x) → 9 as x → ∞
(b) Is it possible that the graph of f is concave down for

all x > 6? Explain.

38. (a) Does f(x) satisfy the conditions for the Intermedi-

ate Value Theorem on 0 ≤ x ≤ 2 if

f(x) =
{
ex 0 ≤ x ≤ 1
4 + (x− 1)2 1 < x ≤ 2?

(b) What are f(0) and f(2)? Can you find a value of

k between f(0) and f(2) such that the equation

f(x) = k has no solution? If so, what is it?

Strengthen Your Understanding

In Problems 39–40, explain what is wrong with the statement.

39. For any function f(x), if f(a) = 2 and f(b) = 4, the In-

termediate Value Theorem says that f takes on the value

3 for some x between a and b.

40. If f(x) is continuous on 0 ≤ x ≤ 2 and if f(0) = 0 and

f(2) = 10, the Intermediate Value Theorem says that

f(1) = 5.

In Problems 41–44, give an example of:

41. A function which is defined for all x and continuous ev-

erywhere except at x = 15.

42. A function to which the Intermediate Value Theorem

does not apply on the interval −1 ≤ x ≤ 1.

43. A function that is continuous on [0, 1] but not continuous

on [1, 3].

44. A function that is increasing but not continuous on

[0, 10].

Are the statements in Problems 45–47 true or false? Give an

explanation for your answer.

45. If a function is not continuous at a point, then it is not

defined at that point.

46. If f is continuous on the interval [0, 10] and f(0) = 0
and f(10) = 100, then f(c) cannot be negative for c in

[0, 10].

47. If f(x) is not continuous on the interval [a, b], then f(x)
must omit at least one value between f(a) and f(b).

1.8 LIMITS

The concept of limit is the underpinning of calculus. In Section 1.7, we said that a function f is

continuous at x = c if the values of f(x) approach f(c) as x approaches c. In this section, we define

a limit, which makes precise what we mean by approaching.
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58 Chapter One A LIBRARY OF FUNCTIONS

The Idea of a Limit

We first introduce some notation:

We write lim
x→c

f(x) = L if the values of f(x) approach L as x approaches c.

How should we find L, or even know whether such a number exists? We will look for trends in the

values of f(x) as x gets closer to c, but x 6= c. A graph from a calculator or computer often helps.

Example 1 Use a graph to estimate lim
θ→0

(
sin θ

θ

)

. (Use radians.)

θ−2π −π π 2π

1

f(θ) =
sin θ

θ

Figure 1.85: Find the limit as θ → 0

Solution Figure 1.85 shows that as θ approaches 0 from either side, the value of sin θ/θ appears to approach

1, suggesting that lim
θ→0

(sin θ/θ) = 1. Zooming in on the graph near θ = 0 provides further support

for this conclusion. Notice that sin θ/θ is undefined at θ = 0.

Figure 1.85 strongly suggests that lim
θ→0

(sin θ/θ) = 1, but to be sure we need to be more precise

about words like “approach” and “close.”

Definition of Limit

By the beginning of the 19th century, calculus had proved its worth, and there was no doubt about

the correctness of its answers. However, it was not until the work of the French mathematician

Augustin Cauchy (1789–1857) that calculus was put on a rigorous footing. Cauchy gave a formal

definition of the limit, similar to the following:

A function f is defined on an interval around c, except perhaps at the point x = c. We define

the limit of the function f(x) as x approaches c, written limx→c f(x), to be a number L (if

one exists) such that f(x) is as close to L as we want whenever x is sufficiently close to c
(but x 6= c). If L exists, we write

lim
x→c

f(x) = L.

Shortly, we see how “as close as we want” and “sufficiently close” are expressed using inequalities.

First, we look at lim
θ→0

(sin θ/θ) more closely (see Example 1).
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1.8 LIMITS 59

Example 2 By graphing y = (sin θ)/θ in an appropriate window, find how close θ should be to 0 in order to

make (sin θ)/θ within 0.01 of 1.

Solution Since we want (sin θ)/θ to be within 0.01 of 1, we set the y-range on the graphing window to go

from 0.99 to 1.01. Our first attempt with −0.5 ≤ θ ≤ 0.5 yields the graph in Figure 1.86. Since

we want the y-values to stay within the range 0.99 < y < 1.01, we do not want the graph to

leave the window through the top or bottom. By trial and error, we find that changing the θ-range

to −0.2 ≤ θ ≤ 0.2 gives the graph in Figure 1.87. Thus, the graph suggests that (sin θ)/θ is within

0.01 of 1 whenever θ is within 0.2 of 0. Proving this requires an analytical argument, not just graphs

from a calculator.

1.01

0.99
−0.5 0.5

y

Figure 1.86: (sin θ)/θ with

−0.5 ≤ θ ≤ 0.5

1.01

0.99
−0.2 0.2

y

Figure 1.87: (sin θ)/θ with

−0.2 ≤ θ ≤ 0.2

When we say “f(x) is close to L,” we measure closeness by the distance between f(x) and L,

expressed using absolute values:

|f(x)− L| = Distance between f(x) and L.

When we say “as close to L as we want,” we use ǫ (the Greek letter epsilon) to specify how close.

We write

|f(x)− L| < ǫ

to indicate that we want the distance between f(x) and L to be less than ǫ. In Example 2 we used

ǫ = 0.01. Similarly, we interpret “x is sufficiently close to c” as specifying a distance between x
and c:

|x− c| < δ,

where δ (the Greek letter delta) tells us how close x should be to c. In Example 2 we found δ = 0.2.

If lim
x→c

f(x) = L, we know that no matter how narrow the horizontal band determined by ǫ in

Figure 1.88, there is always a δ which makes the graph stay within that band, for c− δ < x < c+ δ.

Thus we restate the definition of a limit, using symbols:

Definition of Limit

We define lim
x→c

f(x) to be the number L (if one exists) such that for every ǫ > 0 (as small

as we want), there is a δ > 0 (sufficiently small) such that if |x − c| < δ and x 6= c, then

|f(x)− L| < ǫ.

We have arrived at a formal definition of limit. Let’s see if it agrees with our intuition.
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c− δ c c+ δ

L− ǫ

L

L+ ǫ

✻❄
ǫ

✻❄ǫ

f(x)

x

Figure 1.88: What the definition of the limit means graphically

Example 3 Use the definition of limit to show that lim
x→3

2x = 6.

Solution We must show how, given any ǫ > 0, we can find a δ > 0 such that

If |x− 3| < δ and x 6= 3, then |2x− 6| < ǫ.

Since |2x− 6| = 2|x− 3|, to get |2x− 6| < ǫ we require that |x− 3| < ǫ/2. Thus we take δ = ǫ/2.

It is important to understand that the ǫ, δ definition does not make it easier to calculate limits;

rather, the ǫ, δ definition makes it possible to put calculus on a rigorous foundation. From this

foundation, we can prove the following properties. See Problems 78–80.

Theorem 1.2: Properties of Limits

Assuming all the limits on the right-hand side exist:

1. If b is a constant, then lim
x→c

(bf(x)) = b
(

lim
x→c

f(x)
)

.

2. lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x).

3. lim
x→c

(f(x)g(x)) =
(

lim
x→c

f(x)
)(

lim
x→c

g(x)
)

.

4. lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)
, provided lim

x→c
g(x) 6= 0.

5. For any constant k, lim
x→c

k = k.

6. lim
x→c

x = c.

These properties underlie many limit calculations, though we may not acknowledge them explicitly.

Example 4 Explain how the limit properties are used in the following calculation:

lim
x→3

x2 + 5x

x+ 9
=

32 + 5 · 3

3 + 9
= 2.
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1.8 LIMITS 61

Solution We calculate this limit in stages, using the limit properties to justify each step:

lim
x→3

x2 + 5x

x+ 9
=

lim
x→3

(x2 + 5x)

lim
x→3

(x+ 9)
(Property 4, since limx→3(x + 9) 6= 0)

=
lim
x→3

(x2) + lim
x→3

(5x)

lim
x→3

x+ lim
x→3

9
(Property 2)

=

(

lim
x→3

x
)2

+ 5
(

lim
x→3

x
)

lim
x→3

x+ lim
x→3

9
(Properties 1 and 3)

=
32 + 5 · 3

3 + 9
= 2. (Properties 5 and 6)

One- and Two-Sided Limits

When we write

lim
x→2

f(x),

we mean the number that f(x) approaches as x approaches 2 from both sides. We examine values

of f(x) as x approaches 2 through values greater than 2 (such as 2.1, 2.01, 2.003) and values less

than 2 (such as 1.9, 1.99, 1.994). If we want x to approach 2 only through values greater than 2, we

write

lim
x→2+

f(x)

for the number that f(x) approaches (assuming such a number exists). Similarly,

lim
x→2−

f(x)

denotes the number (if it exists) obtained by letting x approach 2 through values less than 2. We call

lim
x→2+

f(x) a right-hand limit and lim
x→2−

f(x) a left-hand limit. Problems 43 and 44 ask for formal

definitions of left- and right-hand limits.

2

L1

L2

f(x)

x

Figure 1.89: Left- and right-hand limits

at x = 2

For the function graphed in Figure 1.89, we have

lim
x→2−

f(x) = L1 lim
x→2+

f(x) = L2.

If the left- and right-hand limits were equal, that is, if L1 = L2, then it can be proved that lim
x→2

f(x)

exists and lim
x→2

f(x) = L1 = L2. Since L1 6= L2 in Figure 1.89, we see that lim
x→2

f(x) does not

exist in this case.

When Limits Do Not Exist

Whenever there is no number L such that lim
x→c

f(x) = L, we say lim
x→c

f(x) does not exist. Here are

three examples in which limits fail to exist.
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Example 5 Explain why lim
x→2

|x− 2|

x− 2
does not exist.

Solution Figure 1.90 shows the problem: The right-hand limit and the left-hand limit are different. For x > 2,

we have |x− 2| = x− 2, so as x approaches 2 from the right,

lim
x→2+

|x− 2|

x− 2
= lim

x→2+

x− 2

x− 2
= lim

x→2+
1 = 1.

Similarly, if x < 2, then |x− 2| = 2− x so

lim
x→2−

|x− 2|

x− 2
= lim

x→2−

2− x

x− 2
= lim

x→2−
(−1) = −1.

So if lim
x→2

|x− 2|

x− 2
= L then L would have to be both 1 and −1. Since L cannot have two different

values, the limit does not exist.

2

−1

1

x

Figure 1.90: Graph of

|x− 2|/(x− 2)

x

Figure 1.91: Graph of 1/x2

− 1
2π

1
2π

x

Figure 1.92: Graph of sin (1/x)

Example 6 Explain why lim
x→0

1

x2
does not exist.

Solution As x approaches zero, 1/x2 becomes arbitrarily large, so it cannot approach any finite number L.

See Figure 1.91. Therefore we say 1/x2 has no limit as x → 0.

If lim
x→a

f(x) does not exist because f(x) gets arbitrarily large on both sides of a, we also say

lim
x→a

f(x) = ∞. So in Example 6 we could say lim
x→0

1/x2 = ∞. This behavior may also be described

as “diverging to infinity.”

Example 7 Explain why lim
x→0

sin

(
1

x

)

does not exist.

Solution The sine function has values between −1 and 1. The graph in Figure 1.92 oscillates more and more

rapidly as x → 0. There are x-values approaching 0 where sin(1/x) = −1. There are also x-values

approaching 0 where sin(1/x) = 1. So if the limit existed, it would have to be both −1 and 1. Thus,

the limit does not exist.
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1.8 LIMITS 63

Limits at Infinity

Sometimes we want to know what happens to f(x) as x gets large, that is, the end behavior of f .

If f(x) gets as close to a number L as we please when x gets sufficiently large, then we write

lim
x→∞

f(x) = L.

Similarly, if f(x) approaches L when x is negative and has a sufficiently large absolute value,

then we write

lim
x→−∞

f(x) = L.

The symbol ∞ does not represent a number. Writing x → ∞ means that we consider arbitrarily

large values of x. If the limit of f(x) as x → ∞ or x → −∞ is L, we say that the graph of f has

y = L as a horizontal asymptote. Problem 45 asks for a formal definition of limx→∞ f(x).

Example 8 Investigate lim
x→∞

1

x
and lim

x→−∞

1

x
.

Solution A graph of f(x) = 1/x in a large window shows 1/x approaching zero as x increases in either the

positive or the negative direction (see Figure 1.93). This is as we would expect, since dividing 1 by

larger and larger numbers yields answers which are closer and closer to zero. This suggests that

lim
x→∞

1

x
= lim

x→−∞

1

x
= 0,

and that f(x) = 1/x has y = 0 as a horizontal asymptote as x → ±∞.

x

y

f(x) = 1
x

Figure 1.93: The end behavior of f(x) = 1/x

Definition of Continuity

We can now give a precise definition of continuity using limits.

The function f is continuous at x = c if f is defined at x = c and if

lim
x→c

f(x) = f(c).

In other words, f(x) is as close as we want to f(c) provided x is close enough to c. The

function is continuous on an interval [a, b] if it is continuous at every point in the interval.39

Constant functions and f(x) = x are continuous for all x. Using the continuity of sums and

products, we can show that any polynomial is continuous. Proving that sinx, cosx, and ex are

39If c is an endpoint of the interval, we define continuity at x = c using one-sided limits at c.
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64 Chapter One A LIBRARY OF FUNCTIONS

continuous is more difficult. The following theorem, based on the properties of limits on page 60,

makes it easier to decide whether certain combinations of functions are continuous.

Theorem 1.3: Continuity of Sums, Products, and Quotients of Functions

Suppose that f and g are continuous on an interval and that b is a constant. Then, on that

same interval,

1. bf(x) is continuous.

2. f(x) + g(x) is continuous.

3. f(x)g(x) is continuous.

4. f(x)/g(x) is continuous, provided g(x) 6= 0 on the interval.

We prove the third of these properties.

Proof Let c be any point in the interval. We must show that lim
x→c

(f(x)g(x)) = f(c)g(c). Since f(x) and

g(x) are continuous, we know that lim
x→c

f(x) = f(c) and lim
x→c

g(x) = g(c). So, by the third property

of limits in Theorem 1.2,

lim
x→c

(f(x)g(x)) =
(

lim
x→c

f(x)
) (

lim
x→c

g(x)
)

= f(c)g(c).

Since c was chosen arbitrarily, we have shown that f(x)g(x) is continuous at every point in the

interval.

Theorem 1.4: Continuity of Composite Functions

If f and g are continuous, and if the composite function f(g(x)) is defined on an interval,

then f(g(x)) is continuous on that interval.

Assuming the continuity of sinx and ex, Theorem 1.4 shows us, for example, that sin(ex) and esin x

are both continuous.

Although we now have a formal definition of continuity, some properties of continuous func-

tions, such as the Intermediate Value Theorem, can be difficult to prove. For a further treatment of

limits and continuity, see www.wiley.com/college/hughes-hallett.

Exercises and Problems for Section 1.8

Exercises

1. Use Figure 1.94 to give approximate values for the fol-

lowing limits (if they exist).

(a) lim
x→−2

f(x) (b) lim
x→0

f(x)

(c) lim
x→2

f(x) (d) lim
x→4

f(x)

−2 2 4

5

x

f(x)

Figure 1.94

2. Use Figure 1.95 to estimate the following limits, if they

exist.

(a) lim
x→1−

f(x) (b) lim
x→1+

f(x) (c) lim
x→1

f(x)

(d) lim
x→2−

f(x) (e) lim
x→2+

f(x) (f) lim
x→2

f(x)

1 2 3

−1

1

2

f(x)

x

Figure 1.95
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1.8 LIMITS 65

3. Using Figures 1.96 and 1.97, estimate

(a) lim
x→1−

(f(x) + g(x)) (b) lim
x→1+

(f(x) + 2g(x))

(c) lim
x→1−

f(x)g(x) (d) lim
x→1+

f(x)

g(x)

(1, 3)

(1, 4)

1 2

f(x)

0

2

4

x

Figure 1.96

(1, 1)

(1, 5)

1 2

g(x)

0

2

4

6

x

Figure 1.97

In Exercises 4–9, draw a possible graph of f(x). Assume f(x)
is defined and continuous for all real x.

4. lim
x→∞

f(x) = −∞ and lim
x→−∞

f(x) = −∞

5. lim
x→∞

f(x) = −∞ and lim
x→−∞

f(x) = +∞

6. lim
x→∞

f(x) = 1 and lim
x→−∞

f(x) = +∞

7. lim
x→∞

f(x) = −∞ and lim
x→−∞

f(x) = 3

8. lim
x→∞

f(x) = +∞ and lim
x→−1

f(x) = 2

9. lim
x→3

f(x) = 5 and lim
x→−∞

f(x) = +∞

In Exercises 10–15, give lim
x→−∞

f(x) and lim
x→+∞

f(x).

10. f(x) = −x4

11. f(x) = 5 + 21x− 2x3

12. f(x) = x5 + 25x4 − 37x3 − 200x2 + 48x+ 10

13. f(x) =
3x3 + 6x2 + 45

5x3 + 25x + 12

14. f(x) = 8x−3

15. f(x) = 25e0.08x

Estimate the limits in Exercises 16–17 graphically.

16. lim
x→0

|x|
x

17. lim
x→0

x ln |x|

18. Does f(x) =
|x|
x

have right or left limits at 0? Is f(x)

continuous?

Use a graph to estimate each of the limits in Exercises 19–28.

Use radians unless degrees are indicated by θ◦.

19. lim
θ→0

sin (2θ)

θ
20. lim

θ→0

cos θ − 1

θ

21. lim
θ→0

sin θ◦

θ◦
22. lim

θ→0

θ

tan(3θ)

23. lim
h→0

eh − 1

h
24. lim

h→0

e5h − 1

h

25. lim
h→0

2h − 1

h
26. lim

h→0

3h − 1

h

27. lim
h→0

cos(3h)− 1

h
28. lim

h→0

sin(3h)

h

For the functions in Exercises 29–31, use algebra to evaluate

the limits lim
x→a+

f(x), lim
x→a−

f(x), and lim
x→a

f(x) if they ex-

ist. Sketch a graph to confirm your answers.

29. a = 4, f(x) =
|x− 4|
x− 4

30. a = 2, f(x) =
|x− 2|

x

31. a = 3, f(x) =







x2 − 2, 0 < x < 3

2, x = 3

2x+ 1, 3 < x

32. Estimate how close θ should be to 0 to make (sin θ)/θ
stay within 0.001 of 1.

33. Write the definition of the following statement both in

words and in symbols:

lim
h→a

g(h) = K.

Problems

In Problems 34–37, is the function continuous for all x? If

not, say where it is not continuous and explain in what way

the definition of continuity is not satisfied.

34. f(x) = 1/x

35. f(x) =
{ |x|/x x 6= 0
0 x = 0

36. f(x) =
{
x/x x 6= 0
1 x = 0

37. f(x) =
{
2x/x x 6= 0
3 x = 0

38. By graphing y = (1 + x)1/x, estimate lim
x→0

(1 + x)1/x.

You should recognize the answer you get. What does the

limit appear to be?

39. Investigate lim
h→0

(1 + h)1/h numerically.

40. What does a calculator suggest about lim
x→0+

xe1/x? Does

the limit appear to exist? Explain.
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66 Chapter One A LIBRARY OF FUNCTIONS

41. If p(x) is the function on page 54 giving the price of mail-

ing a first-class letter, explain why limx→1 p(x) does not

exist.

42. The notation limx→0+ means that we only consider val-

ues of x greater than 0. Estimate the limit

lim
x→0+

xx,

either by evaluating xx for smaller and smaller positive

values of x (say x = 0.1, 0.01, 0.001, . . .) or by zooming

in on the graph of y = xx near x = 0.

In Problems 43–45, modify the definition of limit on page 59

to give a definition of each of the following.

43. A right-hand limit 44. A left-hand limit

45. lim
x→∞

f(x) = L

For the functions in Problems 46–53, do the following:

(a) Make a table of values of f(x) for x = 0.1, 0.01, 0.001,

0.0001, −0.1, −0.01, −0.001, and −0.0001.

(b) Make a conjecture about the value of lim
x→0

f(x).

(c) Graph the function to see if it is consistent with your an-

swers to parts (a) and (b).

(d) Find an interval for x near 0 such that the difference be-

tween your conjectured limit and the value of the func-

tion is less than 0.01. (In other words, find a window

of height 0.02 such that the graph exits the sides of the

window and not the top or bottom of the window.)

46. f(x) = 3x+ 1 47. f(x) = x2 − 1

48. f(x) = sin 2x 49. f(x) = sin 3x

50. f(x) =
sin 2x

x
51. f(x) =

sin 3x

x

52. f(x) =
ex − 1

x
53. f(x) =

e2x − 1

x

Assuming that limits as x → ∞ have the properties listed for

limits as x → c on page 60, use algebraic manipulations to

evaluate lim
x→∞

for the functions in Problems 54–63.

54. f(x) =
x+ 3

2− x
55. f(x) =

π + 3x

πx− 3

56. f(x) =
x− 5

5 + 2x2
57. f(x) =

x2 + 2x− 1

3 + 3x2

58. f(x) =
x2 + 4

x+ 3
59. f(x) =

2x3 − 16x2

4x2 + 3x3

60. f(x) =
x4 + 3x

x4 + 2x5
61. f(x) =

3ex + 2

2ex + 3

62. f(x) =
2−x + 5

3−x + 7
63. f(x) =

2e−x + 3

3e−x + 2

In Problems 64–71, find a value of the constant k such that the

limit exists.

64. lim
x→4

x2 − k2

x− 4
65. lim

x→1

x2 − kx+ 4

x− 1

66. lim
x→−2

x2 + 4x+ k

x+ 2
67. lim

x→∞

x2 + 3x+ 5

4x+ 1 + xk

68. lim
x→−∞

e2x − 5

ekx + 3
69. lim

x→∞

x3 − 6

xk + 3

70. lim
x→∞

3kx + 6

32x + 4
71. lim

x→−∞

3kx + 6

32x + 4

For each value of ǫ in Problems 72–73, find a positive value

of δ such that the graph of the function leaves the window

a − δ < x < a + δ, b − ǫ < y < b + ǫ by the sides and not

through the top or bottom.

72. f(x) = −2x + 3; a = 0; b = 3; ǫ = 0.2, 0.1, 0.02,

0.01, 0.002, 0.001.

73. g(x) = −x3 + 2; a = 0; b = 2; ǫ = 0.1, 0.01, 0.001.

74. Show that lim
x→0

(−2x+ 3) = 3. [Hint: Use Problem 72.]

75. Consider the function f(x) = sin(1/x).

(a) Find a sequence of x-values that approach 0 such

that sin(1/x) = 0.
[Hint: Use the fact that sin(π) = sin(2π) =
sin(3π) = . . . = sin(nπ) = 0.]

(b) Find a sequence of x-values that approach 0 such

that sin(1/x) = 1.

[Hint: Use the fact that sin(nπ/2) = 1 if n =
1, 5, 9, . . . .]

(c) Find a sequence of x-values that approach 0 such

that sin(1/x) = −1.
(d) Explain why your answers to any two of parts (a)–

(c) show that lim
x→0

sin(1/x) does not exist.

For the functions in Problems 76–77, do the following:

(a) Make a table of values of f(x) for x = a+0.1, a+0.01,

a + 0.001, a + 0.0001, a − 0.1, a − 0.01, a − 0.001,

and a− 0.0001.

(b) Make a conjecture about the value of lim
x→a

f(x).

(c) Graph the function to see if it is consistent with your an-

swers to parts (a) and (b).

(d) Find an interval for x containing a such that the differ-

ence between your conjectured limit and the value of

the function is less than 0.01 on that interval. (In other

words, find a window of height 0.02 such that the graph

exits the sides of the window and not the top or bottom

of the window.)
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76. f(x) =
cos 2x− 1 + 2x2

x3
, a = 0

77. f(x) =
cos 3x− 1 + 4.5x2

x3
, a = 0

78. This problem suggests a proof of the first property of lim-

its on page 60: lim
x→c

bf(x) = b lim
x→c

f(x).

(a) First, prove the property in the case b = 0.

(b) Now suppose that b 6= 0. Let ǫ > 0. Show that if

|f(x)− L| < ǫ/|b|, then |bf(x)− bL| < ǫ.
(c) Finally, prove that if lim

x→c
f(x) = L then

lim
x→c

bf(x) = bL. [Hint: Choose δ so that if |x−c| <
δ, then |f(x)− L| < ǫ/|b|.]

79. Prove the second property of limits: lim
x→c

(f(x) + g(x)) =

lim
x→c

f(x)+ lim
x→c

g(x). Assume that the limits on the right

exist.

80. This problem suggests a proof of the third property of

limits (assuming the limits on the right exist):

lim
x→c

(f(x)g(x)) =
(

lim
x→c

f(x)
)(

lim
x→c

g(x)
)

Let L1 = limx→c f(x) and L2 = limx→c g(x).

(a) First, show that if lim
x→c

f(x) = lim
x→c

g(x) = 0, then

lim
x→c

(f(x)g(x)) = 0.

(b) Show algebraically that

f(x)g(x) = (f(x)− L1) (g(x)− L2)+L1g(x)+
L2f(x)− L1L2.

(c) Use the second limit property (see Problem 79) to

explain why

lim
x→c

(f(x)− L1) = lim
x→c

(g(x)− L2) = 0.

(d) Use parts (a) and (c) to explain why

lim
x→c

(f(x)− L1) (g(x)− L2) = 0.

(e) Finally, use parts (b) and (d) and the first and second

limit properties to show that

lim
x→c

(f(x)g(x)) =
(

lim
x→c

f(x)
)(

lim
x→c

g(x)
)

.

81. Show f(x) = x is continuous everywhere.

82. Use Problem 81 to show that for any positive integer n,

the function xn is continuous everywhere.

83. Use Theorem 1.2 on page 60 to explain why if f and g
are continuous on an interval, then so are f + g, fg, and

f/g (assuming g(x) 6= 0 on the interval).

Strengthen Your Understanding

In Problems 84–86, explain what is wrong with the statement.

84. If P (x) and Q(x) are polynomials, P (x)/Q(x) must be

continuous for all x.

85. lim
x→1

x− 1

|x− 1| = 1

86. If limx→c f(x) exists, then f(x) is continuous at x = c.

In Problems 87–88, give an example of:

87. A rational function that has a limit at x = 1 but is not

continuous at x = 1.

88. A function f(x) where limx→∞ f(x) = 2 and

limx→−∞ f(x) = −2.

Suppose that limx→3 f(x) = 7. Are the statements in Prob-

lems 89–95 true or false? If a statement is true, explain how

you know. If a statement is false, give a counterexample.

89. limx→3(xf(x)) = 21.

90. If g(3) = 4, then limx→3(f(x)g(x)) = 28.

91. If limx→3 g(x) = 5, then limx→3(f(x) + g(x)) = 12.

92. If limx→3(f(x) + g(x)) = 12, then limx→3 g(x) = 5.

93. f(2.99) is closer to 7 than f(2.9) is.

94. If f(3.1) > 0, then f(3.01) > 0.

95. If limx→3 g(x) does not exist, then limx→3(f(x)g(x))
does not exist.

Which of the statements in Problems 96–100 are true about

every function f(x) such that lim
x→c

f(x) = L? Give a reason

for your answer.

96. If f(x) is within 10−3 of L, then x is within 10−3 of c.

97. There is a positive ǫ such that, provided x is within 10−3

of c, and x 6= c, we can be sure f(x) is within ǫ of L.

98. For any positive ǫ, we can find a positive δ such that, pro-

vided x is within δ of c, and x 6= c, we can be sure that

f(x) is within ǫ of L.

99. For each ǫ > 0, there is a δ > 0 such that if x is not

within δ of c, then f(x) is not within ǫ of L.

100. For each ǫ > 0, there is some δ > 0 such that if f(x) is

within ǫ of L, then we can be sure that x is within δ of c.

101. Which of the following statements is a direct conse-

quence of the statement: “If f and g are continuous at

x = a and g(a) 6= 0 then f/g is continuous at x = a?”

(a) If f and g are continuous at x = a and f(a) 6= 0
then g/f is continuous at x = a.

(b) If f and g are continuous at x = a and g(a) = 0,

then f/g is not continuous at x = a.

(c) If f , g, are continuous at x = a, but f/g is not con-

tinuous at x = a, then g(a) = 0.

(d) If f and f/g are continuous at x = a and g(a) 6= 0,

then g is continuous at x = a.
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Function terminology

Domain/range, increasing/decreasing, concavity, zeros

(roots), even/odd, end behavior, asymptotes.

• Linear functions

Slope, vertical intercept. Grow by equal amounts in equal

times.

• Exponential functions

Exponential growth and decay, with base e, growth rate,

continuous growth rate, doubling time, half life. Grow by

equal percentages in equal times.

• Logarithmic functions

Log base 10, natural logarithm.

• Trigonometric functions

Sine and cosine, tangent, amplitude, period, arcsine, arc-

tangent.

• Power functions

• Polynomials and rational functions

• New functions from old

Inverse functions, composition of functions, shifting,

stretching, shrinking.

• Working with functions

Find a formula for a linear, exponential, power, logarith-

mic, or trigonometric function, given graph, table of val-

ues, or verbal description. Find vertical and horizontal

asymptotes. End behavior. Proportional relationships.

• Comparisons between functions

Exponential functions dominate power and linear func-

tions.

• Continuity

Interpret graphically and numerically. Intermediate Value

Theorem.

• Limits

Graphical interpretation, ǫ-δ definition, properties, one-

sided limits, limits to infinity.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER ONE

Exercises

Find formulas for the functions described in Exercises 1–8.

1. A line with slope 2 and x-intercept 5.

2. A parabola opening downward with its vertex at (2, 5).

3. A parabola with x-intercepts ±1 and y-intercept 3.

4. The bottom half of a circle centered at the origin and with

radius
√
2.

5. The top half of a circle with center (−1, 2) and radius 3.

6. A cubic polynomial having x-intercepts at 1, 5, 7.

7. A rational function of the form y = ax/(x + b) with a

vertical asymptote at x = 2 and a horizontal asymptote

of y = −5.

8. A cosine curve with a maximum at (0, 5), a minimum at

(π,−5), and no maxima or minima in between.

9. When a patient with a rapid heart rate takes a drug,

the heart rate plunges dramatically and then slowly rises

again as the drug wears off. Sketch the heart rate against

time from the moment the drug is administered.

10. If g(x) = (4 − x2)/(x2 + x), find the domain of g(x).
Solve g(x) = 0.

11. The entire graph of f(x) is shown in Figure 1.98.

(a) What is the domain of f(x)?
(b) What is the range of f(x)?
(c) List all zeros of f(x).
(d) List all intervals on which f(x) is decreasing.

(e) Is f(x) concave up or concave down at x = 6?

(f) What is f(4)?
(g) Is this function invertible? Explain.

f(x)

1 2 3 4 5 6 7

−2

−1

0

1

2

3

4

5

x

Figure 1.98

12. For f(n) = 3n2−2 and g(n) = n+1, find and simplify:

(a) f(n) + g(n)
(b) f(n)g(n)
(c) The domain of f(n)/g(n)
(d) f(g(n))
(e) g(f(n))

13. Let m = f(A) be the minimum annual gross income,

in thousands of dollars, needed to obtain a 30-year home

mortgage loan of A thousand dollars at an interest rate of

6%. What do the following quantities represent in terms

of the income needed for a loan?

(a) f(100) (b) f−1(75)
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For Exercises 14–17, solve for t using logs.

14. 5t = 7 15. 2 = (1.02)t 16. 7 · 3t = 5 · 2t

17. 5.02(1.04)t = 12.01(1.03)t

In Exercises 18–19, put the functions in the form P = P0e
kt.

18. P = P02
t 19. P = 5.23(0.2)t

For Exercises 20–21, find functions f and g such that h(x) =
f(g(x)). [Note: Do not choose f(x) = x or g(x) = x.]

20. h(x) = ln(x3) 21. h(x) = (ln x)3

Find the amplitudes and periods in Exercises 22–23.

22. y = 5 sin (x/3) 23. y = 4− 2 cos(5x)

24. Consider the function y = 5 + cos(3x).

(a) What is its amplitude?

(b) What is its period?

(c) Sketch its graph.

25. Determine the end behavior of each function as x →
+∞ and as x → −∞.

(a) f(x) = x7 (b) f(x) = 3x+7x3−12x4

(c) f(x) = x−4 (d) f(x) =
6x3 − 5x2 + 2

x3 − 8

In Exercises 26–27, which function dominates as x → ∞?

26. 10 · 2x or 72,000x12 27. 0.25
√
x or 25,000x−3

Find possible formulas for the graphs in Exercises 28–41.

28.

7

3

x

y 29.

x

y

(0, 1)

(3, 4)

30.

3

y

t

(5, 9)

31.

−5
x

y

32.

x

y

(0, 2)

(2, 1)

33.

π 3π2π 4π

2

θ

z

34.

−2

−1 1
x

y 35.

4

y

x

36.

20

−5

5

t

y 37.

−5 −1 3
x

y

38.

−2 2

3
x

y 39.

x

y
y = 1

40.

−2π 2π

1

3

x

y 41.

5
−1

1
x

y

Are the functions in Exercises 42–43 continuous on [−1, 1]?

42. g(x) =
1

x2 + 1
43. h(x) =

1

1− x2

44. Use Figure 1.99 to estimate the limits if they exist:

(a) lim
x→0

f(x) (b) lim
x→1

f(x)

(c) lim
x→2

f(x) (d) lim
x→3−

f(x)
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−1 1 2 3

1

2

3 f(x)

x

Figure 1.99

For the functions in Exercises 45–46, use algebra to evaluate

the limits lim
x→a+

f(x), lim
x→a−

f(x), and lim
x→a

f(x) if they ex-

ist. Sketch a graph to confirm your answers.

45. a = 3, f(x) =
x3|2x− 6|

x− 3

46. a = 0, f(x) =







ex −1 < x < 0

1 x = 0

cos x 0 < x < 1

Problems

47. The yield, Y , of an apple orchard (in bushels) as a func-

tion of the amount, a, of fertilizer (in pounds) used on the

orchard is shown in Figure 1.100.

(a) Describe the effect of the amount of fertilizer on the

yield of the orchard.

(b) What is the vertical intercept? Explain what it means

in terms of apples and fertilizer.

(c) What is the horizontal intercept? Explain what it

means in terms of apples and fertilizer.

(d) What is the range of this function for 0 ≤ a ≤ 80?

(e) Is the function increasing or decreasing at a = 60?

(f) Is the graph concave up or down near a = 40?

10 20 30 40 50 60 70 80 90

100

200

300

400

500

600

a (lbs)

Y (bushels)

Figure 1.100

48. The graph of Fahrenheit temperature, ◦F, as a function of

Celsius temperature, ◦C, is a line. You know that 212◦F

and 100◦C both represent the temperature at which wa-

ter boils. Similarly, 32◦F and 0◦C both represent water’s

freezing point.

(a) What is the slope of the graph?

(b) What is the equation of the line?

(c) Use the equation to find what Fahrenheit tempera-

ture corresponds to 20◦C.

(d) What temperature is the same number of degrees in

both Celsius and Fahrenheit?

49. The demand function for a certain product, q = D(p), is

linear, where p is the price per item in dollars and q is the

quantity demanded. If p increases by $5, market research

shows that q drops by two items. In addition, 100 items

are purchased if the price is $550.

(a) Find a formula for

(i) q as a linear function of p

(ii) p as a linear function of q

(b) Draw a graph with q on the horizontal axis.

50. A flight from Dulles Airport in Washington, DC, to La-

Guardia Airport in New York City has to circle La-

Guardia several times before being allowed to land. Plot a

graph of the distance of the plane from Washington, DC,

against time, from the moment of takeoff until landing.

51. The force, F , between two atoms depends on the dis-

tance r separating them. See Figure 1.101. A positive F
represents a repulsive force; a negative F represents an

attractive force.

(a) What happens to the force if the atoms start with

r = a and are

(i) Pulled slightly further apart?

(ii) Pushed slightly closer together?

(b) The atoms are said to be in stable equilibrium if the

force between them is zero and the atoms tend to

return to the equilibrium after a minor disturbance.

Does r = a represent a stable equilibrium? Explain.

a
r

F

Figure 1.101

52. When the Olympic Games were held outside Mexico

City in 1968, there was much discussion about the effect

the high altitude (7340 feet) would have on the athletes.

Assuming air pressure decays exponentially by 0.4% ev-

ery 100 feet, by what percentage is air pressure reduced

by moving from sea level to Mexico City?

40http://www.indexmundi.com/ukraine/population.html. Accessed April 17, 2011.
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53. The population of the Ukraine fell from 45.7 million in

2009 to 45.42 million in 2010.40 Assuming exponential

decline, in what year is the population predicted to be 45
million?

54. During April 2006, Zimbabwe’s inflation rate averaged

0.67% a day. This means that, on average, prices went up

by 0.67% from one day to the next.

(a) By what percentage did prices in Zimbabwe increase

in April of 2006?

(b) Assuming the same rate all year, what was Zim-

babwe’s annual inflation rate during 2006?

55. Hydroelectric power is electric power generated by the

force of moving water. The table shows the annual per-

cent change in hydroelectric power consumption by the

US industrial sector.41

(a) According to the table, during what single year(s), if

any, did the US consumption of hydroelectric power

energy increase by at least 10%? Decrease by 10%
or more?

(b) True or False: The hydroelectric power consumption

nearly doubled from 2008 to 2009.

(c) True or False: The hydroelectric power consumption

decreased by about 36% from 2006 to 2009.

Year 2005 2006 2007 2008 2009

% growth over previous yr −1.9 −10 −45.4 5.1 11

56. A kilogram weighs about 2.2 pounds.

(a) Write a formula for the function, f , which gives an

object’s mass in kilograms, k, as a function of its

weight in pounds, p.

(b) Find a formula for the inverse function of f . What

does this inverse function tell you, in practical

terms?

57. The graph of f(x) is a parabola that opens upward and

the graph of g(x) is a line with negative slope. Describe

the graph of g(f(x)) in words.

58. Each of the functions in the table is increasing over its

domain, but each increases in a different way. Match the

functions f , g, h to the graphs in Figure 1.102.

x f(x)

1 1

2 2

4 3

7 4

11 5

16 6

22 7

29 8

37 9

47 10

x g(x)

3.0 1

3.2 2

3.4 3

3.6 4

3.8 5

4.0 6

4.2 7

4.4 8

4.6 9

4.8 10

x h(x)

10 1

20 2

28 3

34 4

39 5

43 6

46.5 7

49 8

51 9

52 10

(a) (b) (c)

Figure 1.102

59. A culture of 100 bacteria doubles after 2 hours. How long

will it take for the number of bacteria to reach 3,200?

60. If f(x) = a ln(x+ 2), how does increasing a affect

(a) The y-intercept? (b) The x-intercept?

61. What is the doubling time of prices which are increasing

by 5% a year?

62. Find the half-life of a radioactive substance that is re-

duced by 30% in 20 hours.

63. The air in a factory is being filtered so that the quantity

of a pollutant, P (in mg/liter), is decreasing according to

the function P = P0e
−kt, where t is time in hours. If

10% of the pollution is removed in the first five hours:

(a) What percentage of the pollution is left after 10

hours?

(b) How long is it before the pollution is reduced by

50%?

(c) Plot a graph of pollution against time. Show the re-

sults of your calculations on the graph.

(d) Explain why the quantity of pollutant might de-

crease in this way.

64. The half-life of radioactive strontium-90 is 29 years. In

1960, radioactive strontium-90 was released into the at-

mosphere during testing of nuclear weapons, and was ab-

sorbed into people’s bones. How many years does it take

until only 10% of the original amount absorbed remains?

65. What is the period of the motion of the minute hand of a

clock?

66. In an electrical outlet, the voltage, V , in volts, is given as

a function of time, t, in seconds, by the formula

V = V0 sin(120πt).

(a) What does V0 represent in terms of voltage?

(b) What is the period of this function?

(c) How many oscillations are completed in 1 second?

41http://www.eia.doe.gov/aer/renew.html. Accessed February 2011.
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67. In a US household, the voltage in volts in an electric out-

let is given by

V = 156 sin(120πt),

where t is in seconds. However, in a European house, the

voltage is given (in the same units) by

V = 339 sin(100πt).

Compare the voltages in the two regions, considering the

maximum voltage and number of cycles (oscillations) per

second.

68. (a) How does the parameter A affect the graph of y =
A sin(Bx)? (Plot for A = 1, 2, 3 with B = 1.)

(b) How does the parameter B affect the graph of y =
A sin(Bx)? (Plot for B = 1, 2, 3 with A = 1.)

69. Water is flowing down a cylindrical pipe of radius r.

(a) Write a formula for the volume, V , of water that

emerges from the end of the pipe in one second if

the water is flowing at a rate of

(i) 3 cm/sec (ii) k cm/sec

(b) Graph your answer to part (a)(ii) as a function of

(i) r, assuming k is constant

(ii) k, assuming r is constant

70. Values of three functions are given in Table 1.22, rounded

to two decimal places. Two are power functions and

one is an exponential. One of the power functions is a

quadratic and one a cubic. Which one is exponential?

Which one is quadratic? Which one is cubic?

Table 1.22

x f(x) x g(x) x k(x)

8.4 5.93 5.0 3.12 0.6 3.24

9.0 7.29 5.5 3.74 1.0 9.01

9.6 8.85 6.0 4.49 1.4 17.66

10.2 10.61 6.5 5.39 1.8 29.19

10.8 12.60 7.0 6.47 2.2 43.61

11.4 14.82 7.5 7.76 2.6 60.91

71. Figure 1.103 shows the hat function

hN (x) =







0 if x < N − 1
1 + x−N if N − 1 ≤ x < N
1 +N − x if N ≤ x < N + 1
0 if N + 1 ≤ x

.

(a) Graph the function f(x) = 3h1(x) + 2h2(x) +
4h3(x).

(b) Describe the graph of g(x) = ah1(x) + bh2(x) +
ch3(x).

N − 2N − 1 N N + 1N + 2

1

x

y

Figure 1.103: Graph of hN (x)

72. The point P moves around the circle of radius 5 shown

in Figure 1.104. The angle θ, in radians, is given as a

function of time, t, by the graph in Figure 1.105.

(a) Estimate the coordinates of P when t = 1.5.

(b) Describe in words the motion of the point P on the

circle.

P

5

θ x

y

Figure 1.104

1 2 3 4 5

1

2

3

4

5

6

7

t

θ

Figure 1.105

73. Match the following functions with the graphs in Fig-

ure 1.106. Assume 0 < b < a.

(a) y =
a

x
− x (b) y =

(x− a)(x+ a)

x

(c) y =
(x− a)(x2 + a)

x2
(d) y =

(x− a)(x+ a)

(x− b)(x+ b)

x

y
(I)

x

y
(II)

x

y
(III)

x

y
(IV)

Figure 1.106
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74. Use a computer or calculator to sketch the functions

y(x) = sin x and zk(x) = ke−x

for k = 1, 2, 4, 6, 8, 10. In each case find the smallest

positive solution of the equation y(x) = zk(x). Now de-

fine a new function f by

f(k) = {Smallest positive solution of y(x) = zk(x)}.

Explain why the function f(k) is not continuous on the

interval 0 ≤ k ≤ 10.

For each value of ǫ in Problems 75–76, find a positive value

of δ such that the graph of the function leaves the window

a − δ < x < a + δ, b − ǫ < y < b + ǫ by the sides and not

through the top or bottom.

75. h(x) = sin x, a = b = 0, ǫ = 0.1, 0.05, 0.0007.

76. k(x) = cos x, a = 0, b = 1, ǫ = 0.1, 0.001, 0.00001.

77. If possible, choose k so that the following function is

continuous on any interval:

f(x) =







5x3 − 10x2

x− 2
x 6= 2

k x = 2

78. Find k so that the following function is continuous on

any interval:

j(x) =
{
k cos x x ≤ 0
ex − k x > 0

CAS Challenge Problems

79. (a) Factor f(x) = x4 + bx3 − cx3 − a2x2 − bcx2 −
a2bx + a2cx + a2bc using a computer algebra sys-

tem.

(b) Assuming a, b, c are constants with 0 < a < b < c,

use your answer to part (a) to make a hand sketch of

the graph of f . Explain how you know its shape.

80. (a) Using a computer algebra system, factor f(x) =
−x5 + 11x4 − 46x3 + 90x2 − 81x+ 27.

(b) Use your answer to part (a) to make a hand sketch of

the graph of f . Explain how you know its shape.

81. Let f(x) = e6x+e5x−2e4x−10e3x−8e2x+16ex+16.

(a) What happens to the value of f(x) as x → ∞? As

x → −∞? Explain your answer.

(b) Using a computer algebra system, factor f(x) and

predict the number of zeros of the function f(x).
(c) What are the exact values of the zeros? What is the

relationship between successive zeros?

82. Let f(x) = x2 − x.

(a) Find the polynomials f(f(x)) and f(f(f(x))) in

expanded form.

(b) What do you expect to be the degree of the polyno-

mial f(f(f(f(f(f(x))))))? Explain.

83. (a) Use a computer algebra system to rewrite the ratio-

nal function

f(x) =
x3 − 30

x− 3

in the form

f(x) = p(x) +
r(x)

q(x)
,

where p(x), q(x), r(x) are polynomials and the de-

gree of r(x) is less than the degree of q(x).
(b) What is the vertical asymptote of f? Use your an-

swer to part (a) to write the formula for a function

whose graph looks like the graph of f for x near the

vertical asymptote.

(c) Use your answer to part (a) to write the formula for

a function whose graph looks like the graph of f for

x → ∞ and x → −∞.

(d) Using graphs, confirm the asymptote you found in

part (b) and the formula you found in part (c).

For Problems 84–85, we note that a function can be writ-

ten as a polynomial in sin x (or cosx) if it is of the form

p(sin x) (or p(cosx)) for some polynomial p(x). For exam-

ple, cos 2x can be written as a polynomial in sin x because

cos(2x) = 1− 2 sin2 x = p(sin x), where p(x) = 1− 2x2.

84. Use the trigonometric capabilities of your computer alge-

bra system to express sin(5x) as a polynomial in sin x.

85. Use the trigonometric capabilities of your computer al-

gebra system to express cos(4x) as a polynomial in

(a) sin x
(b) cos x.

PROJECTS FOR CHAPTER ONE

1. Matching Functions to Data

From the data in Table 1.23, determine a possible formula for each function.42 Write an

explanation of your reasoning.

42Based on a problem by Lee Zia.
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Table 1.23

x f(x) g(x) h(x) F (x) G(x) H(x)

−5 −10 20 25 0.958924 0.544021 2.958924

−4.5 − 9 19 20.25 0.97753 −0.412118 2.97753

−4 − 8 18 16 0.756802 −0.989358 2.756802

−3.5 − 7 17 12.25 0.350783 −0.656987 2.350783

−3 − 6 16 9 −0.14112 0.279415 1.85888

−2.5 − 5 15 6.25 −0.598472 0.958924 1.401528

−2 − 4 14 4 −0.909297 0.756802 1.090703

−1.5 − 3 13 2.25 −0.997495 −0.14112 1.002505

−1 − 2 12 1 −0.841471 −0.909297 1.158529

−0.5 − 1 11 0.25 −0.479426 −0.841471 1.520574

0 0 10 0 0 0 2

0.5 1 9 0.25 0.479426 0.841471 2.479426

1 2 8 1 0.841471 0.909297 2.841471

1.5 3 7 2.25 0.997495 0.14112 2.997495

2 4 6 4 0.909297 −0.756802 2.909297

2.5 5 5 6.25 0.598472 −0.958924 2.598472

3 6 4 9 0.14112 −0.279415 2.14112

3.5 7 3 12.25 −0.350783 0.656987 1.649217

4 8 2 16 −0.756802 0.989358 1.243198

4.5 9 1 20.25 −0.97753 0.412118 1.02247

5 10 0 25 −0.958924 −0.544021 1.041076

2. Which Way is the Wind Blowing?

Mathematicians name a wind by giving the angle toward which it is blowing measured

counterclockwise from east. Meteorologists give the angle from which it is blowing measured

clockwise from north. Both use values from 0◦ to 360◦. Figure 1.107 shows the two angles for

a wind blowing from the northeast.

(a) Graph the mathematicians’ angle θmath as a function of the meteorologists’ angle θmet.

(b) Find a piecewise formula that gives θmath in terms of θmet.

θmet = 45◦
θmath = 225◦

W
ind E

N

Figure 1.107
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